
Partiview User’s Guide

Brian Abbott

Hayden Planetarium

American Museum of Natural History

New York, USA

http://virdir.ncsa.illinois.edu/partiview/

February 11, 2012

http://virdir.ncsa.illinois.edu/partiview/

2

Copyright c© 2000-2012 American Museum of Natural History.

Hayden Planetarium
American Museum of Natural History
Central Park West at 79th Street
New York, NY 10024, USA

We encourage all parts of this manual be reproduced or transmitted by any means, electronic,

mechanical, photocopying, recording, or otherwise. This manual is subject to change without notice.

Please see our website for the latest version of this manual.

The Partiview User’s Guide was typeset using LATEX.

All trademarks and copyrights referred to are the property of their respective owners. See the

“Partiview License” for the terms and conditions of the use and distribution of Partiview.

http://www.haydenplanetarium.org/
http://www.amnh.org/
http://haydenplanetarium.org/universe/
http://www.latex-project.org/

Contents

Contents 3

List of Tables 5

1 Introduction 6

1.1 What is Partiview? . 6

1.2 About this Guide . 7

1.3 Partiview License . 9

1.4 Help and Support . 10

1.5 Acknowledgments . 10

2 Installing and Testing Partiview 11

2.1 Program Requirements . 11

2.2 Installing Partiview . 12

2.3 Testing Partiview . 13

3 Using Partiview 16

3.1 Starting and Quitting Partiview . 16

3.2 Flight Controls . 17

3.3 Partiview’s User Interface . 20

3.4 Data Formats . 26

3.5 Data Groups . 31

3.6 Importing Data . 34

4 Changing Global Properties 37

4.1 Background Color . 37

4.2 Changing Your Position . 38

3

4 CONTENTS

4.3 Field of View . 40

4.4 Clipping Planes . 42

4.5 Point of Interest . 44

4.6 Resizing the Viewing Window . 45

4.7 Exporting the Display . 47

5 Changing Group Properties 49
5.1 Drawing Points . 49

5.2 Placing Polygons on Points . 52

5.3 Drawing Textures on Polygons . 57

5.4 Setting the Luminosity of Particles . 58

5.5 Coloring Particles and Objects . 62

5.6 Label Properties . 68

6 Drawing Objects 70
6.1 Boxes . 70

6.2 Spheres and Ellipsoids . 73

6.3 Meshes . 76

7 Creating Data Subsets 78
7.1 Displaying a Random Subset . 78

7.2 Clip Boxes . 79

7.3 Thresholding Data . 80

7.4 Selecting Data with Specific Values . 82

7.5 Selection Expressions . 83

8 Statistical Reports 85
8.1 The Spatial Extent of the Data . 85

8.2 Generating a Histogram of the Data . 86

A Keyboard Controls 89

B Partiview Commands 90

Index 125

List of Tables

2.1 Test Data Set Files . 13

3.1 Log and Linear Flight Scales . 18

3.2 Flight Control with the Mouse . 18

3.3 Motion Control in Partiview . 19

3.4 Additional Mouse Functionality in Partiview . 19

3.5 Slider Ranges . 23

5.1 Polygon sizes and luminosity . 54

5.2 Orientation vectors for polygons . 57

A.1 Shortcut keys in Partiview. 89

B.1 Issuing Partiview Commands . 90

5

1

Introduction to Partiview

This chapter will introduce you to Partiview. We will briefly describe the software and discuss the

structure of this manual, the Partiview license, as well as support for the software. Subsequent chapters

will discuss installation and provide tutorials on how to use Partiview.

1.1 What is Partiview?

Partiview is a program that visualizes and animates three dimensional particle data. With Partiview, you

have the ability to navigate through 3-D data as if you’re “flying.” Partiview is not limited to particle data;

it can display 2-D images, multiple 2-D polygons which can be built into 3-D surfaces, and

time-evolving data.

Partiview was created by the Virtual Director Group at the National Center for Supercomputing

Applications (NCSA) at the University of Illinois, Urbana-Champaign. It is the child of a larger program

called Virtual Director which was developed to create and edit flight paths through data sets in the

CAVE virtual reality environment. These recorded flight paths are useful when making digital movies for

educational programs like NOVA, IMAX films, and even the Space Shows at the Hayden Planetarium.

Partiview possesses many of the same features as Virtual Director, allowing one to view and explore

data sets on your desktop or laptop. It cannot record flight paths, though it can play them. You can learn

more about Partiview and how to visualize your own data in this manual.

6

http://virdir.ncsa.illinois.edu/virdir/
http://www.ncsa.illinois.edu/
http://en.wikipedia.org/wiki/Cave_automatic_virtual_environment

1.2. ABOUT THIS GUIDE 7

1.2 About this Guide

This guide is meant to provide a hands-on tutorial of Partiview for users of all levels. We have tried to

balance the ease of explanation with a level of technical detail. The chapters are organized in the

following way.

• “Introduction to Partiview” (the chapter you’re currently reading) will introduce you to Partiview,

describe its origins, distribution license, and support policies.

• “Installing and Testing Partiview” describes how to install and test Partiview on your system using

a sample data sets.

• “Using Partiview” provides the basics of how to navigate, using the graphical user interface, data

groups, and working with your own data.

• “Changing Global Properties” describes how to set certain global properties (i.e., those properties

that affect all data groups), such as your position, the field of view, and how to resize and detach

the Viewing Window.

• Chapters 5, 6, 7, and 8 discuss what you can do to a specific data group, including how to

visualize your data with points and polygons, how to set the size of your data, drawing boxes and

spheres to illustrate your data, and creating data subsets and statistical reports. These chapters

are designed to be read while you’re working with the sample data sets provided.

• The Reference Appendix lists the Partiview “Keyboard Controls” and useful

“Partiview Commands.”

Sample Data Sets We have created the Partiview User’s Guide Data which includes several data sets

that have been designed to accompany this guide. These include:

Test Data The least complicated data set, only the bare essentials are included here for

testing purposes.

Complex Data A complex version of the Test Data where we have added data variables

and many additional settings and attributes to the test data.

8 1. INTRODUCTION

Sample Data A sampled data set of about 10,000 particles in a spherical distribution. This

data set is mainly useful when talking about statistical operations and other

commands that act on large numbers of particles.

These data sets are used extensively in this manual for understanding how to use Partiview and its rich

command set.

Typographical Conventions

• Blue text: an external link to the Internet.

• Green text: An internal link to another section of this document.

• Red typewriter font: Partiview input—commands that you type into Partiview’s

Command Line or as a keyboard shortcut.

• Black typewriter font: a generic face used for console output from Partiview,

file names, text in a file, keyboard keys, and text appearing on the user interface.

• Boldface: Partiview commands.

• Italic: Partiview command arguments which are substituted for a value.

• [] (Square brackets): denote optional parts of Partiview commands or optional

arguments (the brackets are never typed themselves). For example, the command

cen[ter] [x y z] [radius] may be issued by typing center or just cen, and takes two

optional arguments (an x , y , z point, or a length).

• [+, *, /]: signifies that the command may be scaled by adding, multiplying, or dividing

the current value by a constant. For example, you can change the label size with the

labelsize command by either setting the size explicitly (lsize 150) or by scaling the

current value by some factor (lsize *10).

• | symbol: represents the word “or,” meaning one option or another may be used, but

not both. For example, the command to draw a clip box in Partiview has the form:

clipbox [on | off | hide] | [boxparameters]. You can either use cb on, cb off,

cb hide, or cb 0,0,0 10,10,10. You cannot use two of these arguments, like

this: cb hide 0,0,0 10,10,10 (this is wrong).

• 〈 〉 (angle brackets): used to group items together, such as the style arguments in

the ellipsoid Data Command. The argument has the form -s 〈solid | plane | wire |
point〉, which groups the styles available to use with the -s option. Only one of the

styles may be used with the -s option.

1.3. PARTIVIEW LICENSE 9

1.3 Partiview License

Copyright 2002 NCSA, University of Illinois

Urbana-Champaign, All rights reserved.

Developed by:

Stuart Levy, NCSA Virtual Director Group

University of Illinois Urbana-Champaign

http://niri.ncsa.uiuc.edu/partiview/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the “Software”), to deal with the Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit

persons to whom the Software is furnished to do so, subject to the following conditions:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimers.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimers in the documentation and/or other materials provided with the distribution.

• Neither the names of NCSA, University of Illinois Urbana-Champaign, nor the names of its contributors

may be used to endorse or promote products derived from this Software without specific prior

written permission.

THE SOFTWARE IS PROVIDED ‘AS IS,’ WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN

ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

This is an instance of the Illinois Open Source License, as certified by the Open Source Initiative in March 2002.

See: http://www.otm.uiuc.edu/faculty/forms/opensource.asp

http://niri.ncsa.uiuc.edu/partiview/
http://www.otm.uiuc.edu/faculty/forms/opensource.asp

10 1. INTRODUCTION

1.4 Help and Support

The main place for support is the official Partiview website, where you will find information on

applications of Partiview, people working with Partiview, and the on-line discussion group for

Partiview users.

The Partiview Google group, launched in 2004, houses an email archive and allows you to ask

questions to your fellow Partiview users.

If you have questions regarding Hayden Planetarium’s Digital Universe, please contact us at the

Digital Universe website.

1.5 Acknowledgments

Partiview was created by Stuart Levy. We would like to thank Stuart for his help in creating this

document and aiding in the distribution of Partiview at the American Museum of Natural History and the

Hayden Planetarium.

Parts of this document are based on the Partiview manual written by Peter Teuben and Stuart Levy.

We are grateful for allowing us to borrow liberally from that document.

We also wish to acknowledge support from NASA and the NCSA Alliance for the distribution and

development of Partiview and the Partiview User’s Guide.

http://virdir.ncsa.illinois.edu/partiview/
http://groups.google.com/group/partiview
http://haydenplanetarium.org/universe/
http://bima.astro.umd.edu/nemo/amnh/

2

Installing and Testing Partiview

This chapter describes how to install and test Partiview on your system. Because Partiview demands

resources from your GPU, we recommend you test Partiview’s performance on your computer using our

sample data sets. After you’ve installed the software, see “Testing Partiview on Your System” to test

Partiview using the accompanying data sets.

2.1 Program Requirements

Partiview, itself, is not terribly demanding on computational resources. The size and display

characteristics of the data sets are what typically determine the resources required. If in doubt, load the

Test Data first to be sure your computer can run Partiview.

Partiview requires the following to run on your computer:

• Windows, Macintosh, and Linux.

• A 3-D accelerated graphics card Almost any off-the-shelf computer can run

Partiview with simple data sets, but for larger, more complex data sets, you might

need a separate graphics card beyond the on-board graphics support found in many

low-end laptops.

• Enough resources to load the data into memory.

11

12 2. INSTALLING AND TESTING PARTIVIEW

2.2 Installing Partiview

You can install Partiview using one of two methods:

Downloading the application: If you’re just using Partiview to view data, this is probably

the best option for you. Downloading a pre-compiled executable application should be

sufficient for most users. Visit:

Digital Universe Website Available in Windows, Macintosh, and Linux

along with the Digital Universe Atlas.

Partiview Website Available in Windows, Macintosh, and Linux as a

stand-alone application without data.

Downloading source code: Use this option if you wish to build Partiview from the source

code. Only expert users will need to do this. The Partiview source code exists on a

concurrent versions system (CVS) server at the University of Maryland hosted by

Peter Teuben. Instructions for downloading and installing the code are on the

Partiview web site.

Partiview is completely self-contained; it will not add files or change settings on your computer outside

of the directory in which you install the program.

http://haydenplanetarium.org/universe/
http://virdir.ncsa.illinois.edu/partiview/
http://www.astro.umd.edu/~teuben/
http://virdir.ncsa.illinois.edu/partiview/#src

2.3. TESTING PARTIVIEW 13

2.3 Testing Partiview on Your System

The test data set was designed for you to see how your computer performs while running Partiview. The

data set consists of 27 points that form a cube around the point (x , y , z) = (0, 0, 0).

After downloading and installing the Partiview User’s Guide Data, the compressed file will extract the

files shown in the table below. These files make up a basic data set.

Table 2.1 – Files in the Test Data Set, part of the Partiview User’s Guide
Data set. All files other than the start scripts can be found in
the ./data/mandata folder.

File Name Description

halo.sgi Texture (image) file.
test.speck Formatted data file.
test.label Labels for the data points.
test.cf Pre-loaded configuration commands.
testdata.bat Windows start script.
testdata.sh Linux start script
testdata.command Macintosh start script

The .speck file contains the data and is in the format

x y z texturenumber

while the .label file contains the labeling information in the format

x y z text label number 1

where the word text is a Partiview command and label number 1 is the label you would like to see at

the point x , y , z. The .cf file is the config file which executes a series of Partiview commands, such as

loading data sets, setting colors, point and polygon sizes, the field of view, etc. Finally, the .sgi files are

images, or textures, that are placed on points or polygons.

The testdata.bat, testdata.sh, and testdata.command files are used to start Partiview and

load the appropriate config file (test.cf). They take the form (without the square brackets):

[path to partiview executable] [path to .cf file]

14 2. INSTALLING AND TESTING PARTIVIEW

For example, if we have the start script in the same directory as the executable, then for Windows users,

the testdata.bat file looks like:

partiview ./data/mandata/test.cf

while the Linux- or Macintosh-based script looks like:

./partiview ./data/mandata/test.cf

a difference of one “./”.

Starting Partiview with the Test Data Let’s start Partiview with the test data by running the

testdata start script for your operating system. If you are getting errors and Partiview is not starting,

the most likely culprit is that the data files aren’t in the correct place for Partiview to find them. The start

script must be in the same folder at the Partiview application, and the data must me in the folder

data/mandata also in the Partiview folder.

Test 1: Flying Around Once you have these data displayed in Partiview, begin by moving these data

around a bit. Make sure you’re in Orbit Flight Mode. You should see an [o]rbit just below the Flight

Mode Menu. If the active flight mode is not [o]rbit, then change it to the Orbit Flight Mode by

selecting it from the menu or by typing an o (lowercase letter O) in the Viewing Window (where the data

are displayed). Now, with the left mouse button pressed, drag the mouse to move the data cube.

As you fly, you are orbiting around the central point, which is called the Point of Interest. In this data

set, the Point of Interest is located at the center of the data cube and is always indicated by a 3-D

Cartesian axis. In Partiview, the red axis points in the direction of positive x , green is in the positive y

direction, and blue is in the positive z direction.

How’s your flying? Do these data move smoothly across the screen? Do these data move at all? If it

takes several seconds for the data cube to move, then your graphics support is not sufficient to run

Partiview effectively. If these data move freely without too much computational delay, then proceed to

the next test.

Test 2: Turning on the Polygons Our next test involves turning on the polygons for each of these

points, thereby increasing the amount of information your computer must redraw. Let’s turn on the

2.3. TESTING PARTIVIEW 15

polygons by either clicking the Polygon Toggle Button or typing poly on in the Command Line. Now,

you are displaying a polygon on each point, upon which a texture (or image) is drawn. Do you notice

any difference in performance with the polygons on? If so, you may have trouble handling larger data

sets. If your performance is still good, move on to the final test.

Test 3: Increasing the slum Value The slum command adjusts the luminosity scale factor, thereby

increasing the brightness of your data. You can increase this scaling factor by using the Slider. While

these data are in motion, click on the slider value selector and slowly drag the slider to the right,

increasing the value. The polygons should be getting larger and will continue to grow, eventually filling

the entire display. The motion might slow down or stop with an increased slum value.

Depending on your performance, you may raise the slum value to such a level that your computer

freezes up. If this occurs, simply click the mouse on the left side of the slider (lower values) and wait for

the computer to catch up. It could take a minute or two. If, however, you are able to use the slider pretty

easily and your computer doesn’t freeze up while redrawing the graphics, then, with the slum value

down to a reasonable level (i.e., the data cube is not completely blown out), try to increase the window

size as you would any other window. If a larger window still performs well, maximize the window to see if

you can run Partiview full screen.

If you are still running without significant slowdown, then you are in good shape to display larger,

more complex data sets. However, if you experienced some sluggish motion and some delay when

changing the Slum Slider, then you may have to experiment to see what happens when larger data sets

are loaded. An upgrade to an accelerated graphics system might be necessary to display large data

sets. However, an adjustment to the config files for data display is a possible solution as well (for

example, displaying the data with a decreased polygon size or even without polygons).

If Partiview runs well on your system, you are now ready to begin learning about how to use the

software. In the following chapters, we will explore the software in depth so that you become familiar

with using Partiview and visualizing your own data.

3

Using Partiview

This chapter describes the basics on how to use Partiview. We cover how to navigate (Partiview’s flight

controls), how to use Partiview’s user interface, as well as data formats, data groups, and importing

data.

3.1 Starting and Quitting Partiview

Start Scripts Partiview can, of course, be run without loading data by either double-clicking on the

executable or running it in a shell window. However, we prefer to initialize Partiview with a config file

which then loads data and sets their display characteristics. This is accomplished using a start script

that takes the form (without the square brackets):

[path to partiview] [path to config file]

For example, if we were using Windows, the start script for the Test Data would look like

partiview ./data/mandata/test.cf

This infers that the start script is located in the same directory as the Partiview executable. If this is so,

then Partiview should start, then read the test.cf file which is located two folders down from the

executable (i.e., inside the folder with the executable is a folder called data, inside of which is a folder

called mandata where the test.cf file resides).

16

3.2. FLIGHT CONTROLS 17

The .partiviewrc File Once Partiview is executed, it first looks for a file called .partiviewrc. This

optional file must be in the same directory as the Partiview application and contains configure options

for Partiview. Typically, this file contains information about the overall characteristics of Partiview that

you would want to apply to all sessions of Partiview, whether you run the Test Data or the Digital

Universe. A typical file may have these commands:

winsize 1280 1024

eval detach

inertia on

telling Partiview to set the size of the Viewing Window to 1280× 1024, detaching the GUI from the

Viewing Window (where the data appear), and setting the inertia feature on, which allows drift in flight

(the inertia command is not really necessary since it is on by default, but it is included here as an

example). If you want the same field of view for all sessions, then you could include the fov command

here too.

Once the .partiviewrc file has been read, then the data config file (i.e., test.cf) is processed.

These files typically read in data files and configure the display. By looking at the config files supplied,

you will quickly learn what commands are appropriate and how you can use these files to tailor the

display to your liking.

Quitting Partiview There are several ways to quit Partiview. These are:

• Clicking on the top-level window button that your operating system supplies. For Windows this is

the “×” button on the upper right, for Macs this is the red button on the upper left side of the

window border.

• Hitting the [ESC] key in the Viewing Window. (If you use the escape key in the GUI first, you may

have to use it again in the Viewing Window if the two are detached.)

• Typing exit in Partiview’s Command Line.

3.2 Flight Controls

Partiview has four flight modes, which each mode capable of two types of motion (forward/backward,

orbit, etc.), one for each mouse button.

http://haydenplanetarium.org/universe/
http://haydenplanetarium.org/universe/

18 3. USING PARTIVIEW

Flight Scale Moving forward or backward presents difficulties when you are traversing the large

scales of some data sets. If your speed were constant everywhere, it would take forever to get from one

end of the data to another. For this reason, Partiview has two flight scales in the forward and backward

direction, linear and logarithmic, described in Table 3.1.

Table 3.1 – Flight scales in Partiview. The distance, d , is measured from the
Point of Interest.

Scale If d = 0. . . If d =∞. . . Description

Linear v = constant v = constant Constant scale everywhere; useful for
exploring an object near the
Point of Interest.

Logarithmic v = 0 v =∞ The scale increases radially away from
the Point of Interest, resulting in higher speeds
as your distance increases from the
Point of Interest.

Flight Modes Partiview has four flight modes, listed in Table 3.2. Each mode is capable of two

types of motion. These are discussed in Table 3.3.

Table 3.2 – Flight Control with the Mouse in Partiview. Shortcut keys are
shown in square brackets and are used in the Viewing Window.

Button
Flight Mode Left (1) Middle (2) Right (3) Scale

Fly [f] pan select [p] forward linear
Orbit [o] orbit select [p] forward log
Rotate [r] orbit select [p] rotate not applicable
Translate [t] translate select [p] forward linear

Changing the Flight Mode Change the flight mode by selecting a mode from the Flight Mode

Menu or by typing one of the shortcut keys (f, o, r, or t) in the Viewing Window. The active flight mode

appears below the Flight Mode Menu.

3.2. FLIGHT CONTROLS 19

Table 3.3 – Motion Control in Partiview

Motion Description

pan Shift your view without moving from your current position, equivalent to
looking around by moving your head but not your feet.

forward,
reverse

With eyes forward (looking at the center of the display), moving toward
or away along your line of sight.

orbit Orbit about the Point of Interest. If the Point of Interest is in view, this
is a simple orbit around that point. If the Point of Interest is out of view,
then you will orbit the Point of Interest but look forward, akin to looking
away from the center of a carousel as you revolve about its center.

rotate Rotate the view about the Point of Interest. When the Point of Interest
is in view, this produces a twisting motion parallel to your screen. If the
Point of Interest is out of view, then the data will appear to approach
from an angle.

translate Move in a direction parallel to the display, thereby moving the data
across the display in the direction of mouse motion. This is equivalent
to moving your feet sideways while keeping your eyes looking straight
ahead.

Table 3.4 – Additional Mouse Functionality in Partiview. Use the mouse but-
tons or designated keyboard shortcuts in the Viewing Window.

Function Mouse Button Keyboard Description

select middle p With the cursor over an object, click
the middle mouse button to produce
a report on that object in the Console
Window. If you don’t have a middle
mouse button, place the cursor on an
object and use the p key.

Changing the
Point of Interest

[Shift]+middle [Shift]+p Select a data point near the mouse
and move the Point of Interest to that
location.

20 3. USING PARTIVIEW

3.3 Partiview’s User Interface

Partiview’s graphical user interface (GUI) was written to be simple and compact. However, for a new

user, parts of the interface may seem cryptic. The buttons, sliders, and menus are designed to make

navigation, data manipulation, and data group toggling effortless, but they result in an interface that

looks foreign to most experienced computer users.

Most of Partiview’s rich command set is not represented in the GUI. We recommend examining the

Reference Sections for a list of commands and keyboard shortcuts.

Using the screen shot below, let’s investigate the GUI elements one by one.

Figure 3.1 – Partiview’s graphical user interface (GUI). Consult the tables and
images below to learn how to use the GUI buttons and sliders.

3.3. PARTIVIEW’S USER INTERFACE 21

Partiview Menus

More
Menu

More contains two items that are rarely used. Inertia toggles
the “drift” feature on and off when you are flying. H-R Diagram in-
vokes a separate window where an H-R Diagram will be displayed
(this is not implemented in the Digital Universe).

Groups
Menu

Choose the active data group. The active data group is displayed
below the menu (here it is group 1, indicated by [g1]).

Flight
Mode
Menu

Choose between the Orbit, Fly, Rotate, Translate flight modes.
Orbit is the default flight mode and is indicated below the menu by
[o]rbit. (See “Flight Controls” for information on Partiview’s four
flight modes.)

Toggle Buttons

Point Turn the points on and off for the active group.

Polygon Turn the polygons on and off for the active group.

Label Turn the labels on and off for the active group.

Texture Turn the textures (images) on and off for the active group.

Box Turn the boxes on and off for the active group.

Home
Button

Return to the ‘home’ position set by the home command in the
config file.

http://en.wikipedia.org/wiki/Hertzsprung-Russell_diagram

22 3. USING PARTIVIEW

The Partiview Slider

Slider
Scale
Button

A toggle button between the logarithmic or linear scale (if avail-
able) for the active slider. See the table below for the range on
each slider in the log and linear modes.

Slider Use the blue value adjuster to alter the value of the active
slider. The logarithmic or linear value is indicated to the left
of the Slider. Below the slider you’ll see the active data group
and the linear value of the slider (except for the Slum Slider,
which has no value shown).

Slider
Menu

A drop-down menu to select the slider function. The active
slider appears below the menu (the Slum Slider is shown).
Slider Menu functions are described in the table below.

Slider Menu

Alpha Sets the opaqueness of an object or image. alpha
FOV Adjusts the field of view. We typically use values near 60◦;

“telescopic” views may be achieved with small values for the
field of view.

fov

Censize The size of the Cartesian Point of Interest marker. Values are in the
units of the particular data you are viewing.

censize

Labelmin Set the minimum pixel height before a label will be drawn. This is
useful if you want only the nearby labels displayed. Set this value
to 0 pixels for all labels to be drawn. Setting labelmin to 20 will
draw labels only when they are more than 20 pixels high.

labelminpixels

Labelsize Set the height of the labels in pixels. labelsize
Polysides Adjust the number of sides of the polygons in the active group. polysides
Polysize Set the size of the polygons. polysize
Slum Scale the luminosity of the particles, increasing or decreasing their

brightness.
slum

3.3. PARTIVIEW’S USER INTERFACE 23

Table 3.5 – Range on the sliders in the linear and logarithmic scales (if avail-
able).

Slider Linear Range Logarithmic Range Default Range

Alpha 0–1 not available linear
FOV 0–180 not available linear
Censize 0–10,000 0.001–10,000 log
Labelmin 0–20 not available linear
Labelsize 0.01–1,000 0.001–1,000 log
Polysides 3–16 not available linear
Polysize 0–10 0.001–10 log
Slum not available 0.001–31,623 log

Group Buttons
Note: Group Buttons appear only if two or more data groups are defined.

Left Mouse Button Turn the active group on or off.
Right Mouse Button Activate a data group (a data group must be active for you to

change its display properties).

24 3. USING PARTIVIEW

Time Controls
NOTE: The time controls appear in the GUI only when time-evolving data are loaded.

Time Display Black text box displays the current time. If an
offset has been set using the Trip Button, this
shows the offset from the tripmeter. The abso-
lute time is the sum of the T and + text boxes.

Reference
Time Display

If the Trip Button is pressed, this blue text box
shows the reference time.

Trip Button Marks a reference in time. Sets the Time to
zero and the Reference Time to the current
time.

Back Button Sets Time to zero. If the Trip Button has been
set, this will return the time to the Reference
Time.

Time Dial Fine-control time adjuster.

Time Control
Buttons

Adjust time by (0.1× speed) data time units.

Speed Slider Logarithmic control of the speed.

Speed Toggle
Buttons

Toggle time forward or backward.

Feed Button This button has no effect and was built into the
GUI for future use.

3.3. PARTIVIEW’S USER INTERFACE 25

Flight Path Controls
NOTE: Partiview is not capable of recording a flight path.

Path
Button

Opens a file explorer to choose a flight path file to load.

Play
[Stop]
Button

Toggle the path animation on and off. Right-click on this
button to adjust the play speed. Play 0.5 will play the
path at half speed; play 5 will play the path 5 times as
fast. Play 5f increases the frame rate 5 times.

att
Button

This button appears to have no function.

Frame
Controls

The frame number is displayed in the white text box.
and move your position on the path by ±1 frame.

and move your position on the path by ±10 frames.
Flight
Path
Slider

Manually adjust time and position on the path. Wall-clock
time is shown in the black text box to the left of the slider.

Console Window and Command Line

Console Window Shows the input and output to and from Partiview. Some com-
mands issued by the user are echoed here in yellow along with
Partiview’s response (if any) to them in green.

Command Line (Cmd:) Use the Command Line to enter Partiview commands interactively.
To type in this line, focus must be given to this narrow window. You
can do this by either placing the mouse in this small space (and
hope it stays there) or use the [Tab] key to move the cursor to the
Command Line. Use the up and down arrow keys to scroll through
the history of commands issued.

26 3. USING PARTIVIEW

3.4 Data Formats

In this section we will discuss how Partiview data is formatted and take you through the steps necessary

to display data in Partiview. Note that we give a step-by-step recipe of this information in

“Importing Data.”

Test Data Files Now that we have seen the Test Data set in Partiview, let’s look at the actual files that

make up the data set to understand how the files are formatted. A listing of files can be found in

Table 2.1. Data files in Partiview can have any extension; however, we recommend using .speck for

data files and .cf for config files. There can be a separate label file as well with the extension .label,

but these data can also appear in the .speck file, streamlining the data and labels into one file.

test.speck If you open this file in a simple text editor, you will find some commands followed by the

data listing. The test.speck file should be in the mandata folder, which is in the data folder located

where you are running Partiview.

Looking at the file, you will see a number of lines throughout the file that begin with the ‘#’ symbol.

This indicates a comment in the file, a line that will be ignored by Partiview and is useful for inserting

comments and notes in the file.

Data in Partiview take the form:

x y z datavar0 datavar1 ... datavarN

where x , y , and z are the 3-D coordinates of the point and the data variables (set with the datavar

command) are pre-defined data variables that are used to describe each point, such as luminosity,

color, etc. These data variables are not necessary though; Partiview will take files with just x , y , z data.

In test.speck we define one data variable called txnum, which is the texture number assigned to

that point. While they are all the same for each point, we need to specify a texture number to load an

image (or texture) on a polygon. It should be noted, however, that the first three columns of any data file

are reserved for x , y , and z. Therefore, column 4 will be data variable 0, if it exists.

3.4. DATA FORMATS 27

The first line of this file (after the commented lines) reads

datavar 0 txnum

By issuing this command in the data file, we are setting a data variable called txnum to data variable 0

which is column 4 in the data file. The datavar command is used to define any data that we want

associated with each x , y , z point. For example, in a stellar data set one may want to include information

on each star’s brightness, its color, and its luminosity. This is possible by writing those attributes to your

data file and defining them using the datavar command.

While we have defined column 0 to be this variable called txnum, we need to explicitly tell Partiview

which column contains the texturing information. This is done in the next line with the texturevar

command, which sets the value to txnum, the data variable assigned to represent the texture number

for each particle. Finally, we need to associate the value of the txnum to an image. Using the texture

Data Command, we assign a texture number of 1 (corresponding to the values in column 4) to a file

called halo.sgi.

test.label The label file is just what you might imagine it to be, a file containing labeling information.

As we stated earlier in this section, labeling information can be placed in a .speck file. However, for

large data sets, it makes sense to have a separate .label file to keep your data better organized. In

Partiview, the text command is used to place text at a specified point. A label takes the form

x y z text yourlabel

where x , y , and z are the location of the label and yourlabel is the label for that point. The label can

have spaces, commas, and other non-alphanumeric characters.

test.cf The test.cf file is the config file for the Test Data. Config files are composed of Partiview

commands that are read and executed at start-up. These commands load the data, configure the data

display, and set various Partiview preferences.

If you inspect the test.cf file, you will notice the first two lines (that are not comments) are the

commands that read in the data using the include data command. Note that many of these commands

begin with the word eval. The eval command is the necessary prefix for a Control Command if you

wish to issue it within a data file, rather than interactively at the Command Line. We discuss the

28 3. USING PARTIVIEW

difference between Control Commands and Data Commands in the next few paragraphs, and we will

discuss the commands you see in this file throughout this chapter.

Adding Data in Partiview While we touched on the topic of loading data, we will offer a more through

discussion here. Let’s start from scratch with an empty canvas, if you will. Start Partiview without any

data by either double-clicking on the Partiview executable file or running it in a shell.

Adding Data Manually In Partiview, data can be manually added at the Command Line via

the command:

add x y z

Of course, when data are read in via a file, which is the primary way in which you will want to import

data, you need not preface it with the add command. However, because we are executing a Data

Command at the Partiview Command Line, the add preface is required (as it is for all Data Commands

issued from the Command Line).

Try adding a few data points in Partiview by entering these commands.

add 1 1 1

add -1 -1 -1

add 2 2 2

add -2 -2 -2

You will notice that nothing happened. This is because you need to tell Partiview about the display

characteristics of these points, specifically, how bright they are. All display parameters have defaults and

the default for a particle’s luminosity is zero. You can confirm this by typing lum at the Command Line.

This will report the current luminosity, which should read lum-by 0() [0..0 mean 0 over 0]—a

zero value for the luminosity. You may set the luminosity to a constant value by typing the command

lum const 500

You may need to fly away from the Point of Interest a little to see all the points, which should form a line

of four blue points.

3.4. DATA FORMATS 29

Reading Data from a File While instructive, it is inefficient to type in all your points at the Command

Line. So, let’s read some data from a prepared data file. We will read in the file complex.speck, the

complex version of the Test Data. First, we need to specify a file path, telling Partiview where the data

files are.

Figure 3.2 – The hierarchy of files and folders in the Partiview User’s Guide
data set.

The Complex Data can be found in the mandata folder, which is located one directory level down

from the directory that contains both the data folder and the Partiview executable.

To load the data, you must tell Partiview where the data files are located. This is accomplished using

the filepath command. Because this is a Data Command, you must preface this command with add if

you’re going to use it interactively at the Partiview Command Line. Now that we know where the files

are, we can issue the command

add filepath ./data/mandata

30 3. USING PARTIVIEW

(NOTE: You may need to type the entire path to the folder, and spaces will need to be entered as a

backslash-space.) This command will set the file path to include all files in the mandata directory.

Rather than read the data into the same data group that contains those points we just entered, let’s

read the data into a new group. A new data group may be created using the gN[=alias]. Let’s call this

data group “complex” and define it in Partiview this way:

g2=complex

You may have noticed the Group Buttons pop on, displaying buttons for both the original data you

entered manually, group 1, and your new group, complex. Assuming the complex group is the active

group (which you can confirm under the Groups Menu where you should see [g2]), we can then read

in the data. Let’s use the read command to import the data file complex.speck

read complex.speck

Upon reading this file (you may need to move toward the Point of Interest to see the data set), you

will see that the labels pop on, but there are no data represented in the view (no points or polygons). If

you look at the data file, you will see that we have combined the labels into the .speck file, rather than

have two separate files. So you’ve just seen the labels pop on in the display, but there are no points

drawn yet. Let’s first adjust the look of the labels, then work on displaying the data points.

Once you fly away from the data cube, you will notice that the labels are so small that you can’t read

them. Let’s see what their current size is and adjust them using the labelsize (or lsize) command. First,

see what the current size is by issuing the lsize command without any arguments. Partiview should

report 0.05 (the default size). This size is in the units of your coordinate system (if our data set is in

meters, then the label height will be 0.05 meters). Change the size by typing the command

lsize *1.1

Once you enter this command, keep hitting the Enter (or Return) key until you reach the desired size;

you are multiplying the size each time by 1.1. You can turn off the label axes (the individual axes on

each label) by typing

laxes off

To clarify things, turn the group 1 data off. You can do this by left-clicking on the g1 button, or typing

g1 off in the Command Line. However you choose to turn the group off, be sure the complex data

3.5. DATA GROUPS 31

group (group 2) remains the active data group. (If it isn’t the active group, just right-click on its group

button.) As a first step toward displaying points, let’s give these data a constant luminosity of 1000 using

the command

lum const 1000

The points appear, but seem to be randomly colored; let’s see how Partiview is coloring the points by

typing color, which invokes the color command without any arguments. It should report the following:

coloring-by 1(coloridx) 0.. 6 mean 2.19, meaning that Partiview is using data variable 1

called coloridx for the color information. In Partiview, the default is to use the 5th column (or data

variable 1) for coloring the particles and the 4th column (data variable 0) for luminosity information.

Let’s see what data variables are available to us by typing

datavar

This will report all the data variables defined in the data file, which you can see in the complex.speck

file. You may want to increase the size of the Console Window or use the scroll bar to see the full report.

We see that the color information is in datavar 1 and is called coloridx. Even though Partiview has set

that column to be the default color column, let’s explicitly tell Partiview that we want to use the data

variable coloridx to color our particles. We can use the color datavar command for this

color coloridx

Upon issuing that command, the colors did not change, so we were right in assuming Partiview was

using the coloridx column to color the points. For more information on coloring objects, see

“Coloring Particles and Objects.”

We have now read in a data set and loaded it into a new data group. Let’s now discuss what data

groups are, how to create them, and how to manipulate data within them.

3.5 Data Groups

This section will review the methods for defining, activating, and manipulating data groups within

Partiview. To discuss these concepts, we have created a config file called groups.cf. Let’s load this

file into an empty Partiview session using the read command:

32 3. USING PARTIVIEW

read ./data/mandata/groups.cf

(You may need to type the complete path, or if you’re continuing from the last section, type

read groups.cf.)

Once you have the file loaded, you will see the familiar Test Data appear. Along with the test data

button, you will also notice three other data group buttons, complex1, complex2, complex3. Using

these data groups, we will run through some of the more common operations on data groups.

Defining a Data Group As we have shown in the previous section, a data group is defined using the

gN command; however, there are several variations on this command. Typically, it is wise to assign a

name, or alias, to each of your data groups using the gN=alias command. If you look at the groups.cf

file, you will notice that we define each data group with the object command, such as,

object g1=test.

How to Refer to Data Groups Data groups can be referenced using either the group number or the

group name. We encourage the use of names simply because data often get shuffled around which

then changes the group number for a particular data set. However, the name of that group can remain

the same. Therefore, when using the Command Line, we propose referring to data groups by using the

object alias command. For example, type this command in the Command Line:

object complex1

This changes the active data group to group 2 since complex1 is defined as group two (g2). The

object alias command is more powerful than simply selecting a group, you may also append group

control commands to control how the group is displayed. For example, you can turn on the complex2

group and change its color and luminosity using these commands:

object complex2 on

color const 1 .5 0

object test color const 0 0 1

label off

This gives you the tools to switch between data groups and execute commands from the Command

line. Behind the scenes, the object alias command is changing the active data group, which is why the

3.5. DATA GROUPS 33

following commands do not need the object alias command to preface them. However, there’s more

than one way to specify the active data group.

Setting the Active Data Group The active data group is the data group on which all group Control

Commands will act. For example, if you want to change the color, luminosity, label size, polygon

attributes, or any other data-group-specific parameter, you need to be sure you are acting on the

appropriate group by activating that group.

There are several ways to set the active data group, these include:

• Selecting the group from the Groups Menu

• Right-clicking on the group button which will also display the group

• Using the command object alias

• Issuing the gN command.

The quickest method is to use the group buttons. If you’re using the Command Line, we discourage

the use of the gN command since group numbers often change. Rather, we prefer using object alias if

you’re using the Command Line.

More often than not, when you are trying to change the display of a data group and nothing is

happening, it is because you are acting on the wrong data group and need to change to the appropriate

group. Be sure to inspect the active data group indicated below the Groups Menu.

Operating on all Data Groups There is a command to operate on all data groups at once. The

command gall will allow you to perform any group Control Command on all defined data groups. For

example, if you turn on all data groups and fly away from the data so you can see each of the groups,

you can brighten them all up by a factor of 3 using the slum command by typing:

gall slum *3

Or, you could turn on all the labels, resize them, color all data white, and then turn off all data groups

using these commands:

gall label on

gall lsize *2

gall color const 1 1 1

gall off

If you use the -v option, gall -v, you will get a report of all data groups and their display status.

34 3. USING PARTIVIEW

3.6 Importing Data

If you have your own data and would like to display it in Partiview, follow the steps in this section to

visualize it in Partiview. Much of the description in this section is a consolidation of the previous two

sections, presented in a step-by-step recipe.

To display your data in Partiview follow these basic steps:

1. Prepare your data in the Partiview data format and write that to a .speck file.

2. If you want labels on the points, include these in your .speck file or create a .label

file.

3. Create a config (.cf) file with the desired Partiview commands to initialize the display

of your data as well as the Partiview session.

4. If you wish to have automatic data loading upon starting Partiview, create a start-up

file (.bat file for Windows, .command for Macintosh, .sh for Linux).

5. Run the startup file and your data should be visible in Partiview.

Now, let’s look at each of these steps in detail.

Prepare Your Data The Partiview data format can be as simple as a file of x , y , z data. However,

there are more complex data formats that result in more powerful data display and manipulation.

Generally, a data point takes the form:

x y z datavar0 datavar1 datavar2 ... datavarN

If you have data variables in addition to the position data, they must be defined at the top of the file. For

example, if you have color data associated with each point, you can define that as datavar 0 using a

datavar command at the top of the file, like

datavar 0 color

Or, if you have 20 different textures that you want to associate with your data and column 6 in your data

file indicates which texture to use for that data point, then put the commands

datavar 2 texnum

texturevar 2

3.6. IMPORTING DATA 35

The first command tells Partiview to associate the data variable called texnum with column 6

(remember, the first three columns are always x , y , z, and column 4 is the zeroth data variable, so

column 6 is data variable 2). The second command explicitly associates column 6 as the texture

variable via the texturevar command. The best way to explore the file formats is to explore the supplied

data sets and those of the Digital Universe.

Create a Label File (optional) The .label file takes the form:

x y z text yourlabel

where the text command is used to tell Partiview that anything after it should be printed at that specified

point. The yourlabel label can have spaces and punctuation. For example, a typical line may look like

the following:

20 30 40 text Alpha Ori

Then, Partiview would place the label “Alpha Ori” at the location (x , y , z) = (20, 30, 40). Note that you

can place label data in the .speck file, but it will increase the number of data points that Partiview

thinks exists since each line is counted as a data point.

Create a Config File Create a configuration file to save the properties of the Partiview session as well

as the properties of the data display. The properties of the Partiview session are set using the global

display commands outlined in “Changing Global Properties” and include settings made with commands

like fov, interest, censize, and jump, to name a few.

The data display properties are set using the group display commands and include commands to set

the particle luminosity, the color of the data set, as well as starting with the points or polygons on or off,

among many others. In addition, some other commands will be needed to read the files and set the

correct file path. Please see the config files in the mandata directory for examples.

Create a Startup File The startup file will launch Partiview and load data sets as well as your

configuration commands. This is done by a one-line file which contains the name of the Partiview

executable followed by the name of the config file. The startup file must be in the same directory as the

Partiview executable. For Windows, this file must have the extension .bat. So, the yourdata.bat file

might look like this:

http://haydenplanetarium.org/universe/

36 3. USING PARTIVIEW

partiview ./data/yourdatafolder/yourdata.cf

For Macintosh users, the file must end with the .command extension and be executable. The format

looks like:

./partiview ./data/yourdatafolder/yourdata.cf

For Linux users, the file may have any name but must be made into an executable via the chmod UNIX

command. The file might look something like this:

./partiview ./data/yourdatadirectory/yourdata.cf

Launch Partiview Run the startup file you just created to launch Partiview and your data. If your data

do not appear in the display, a number of things could be wrong. Most likely, you need to set a lum and

slum value. Check the Console Window for errors.

4

Changing Global Properties

Global view attributes are those settings that affect the entire view—functions that span all data groups.

These are not typically used for changing how particles are displayed, but are used to describe the

overall view in which your data groups are drawn. Among these settings are the field of view, the

background color, and setting the camera position.

4.1 Background Color

Changing the background color in Partiview is simple. Using the bgcolor command, you may set the

background to any color you wish by specifying a red, green, blue (R, G, B) color. The default value is

black [(R, G, B) = (0, 0, 0)], but let’s say you want to change the background to red, this can be

accomplished via the command:

bgcolor 1 0 0

Try this in Partiview. Also, try changing to varying levels of gray by issuing the command bgcolor with

only one argument. When only one argument is specified, all three arguments, R, G, and B are set to

that value. All colors range from 0 to 1, so bgcolor 0 gives you a black background, bgcolor .5

yields a gray, and bgcolor 1 is white.

37

38 4. CHANGING GLOBAL PROPERTIES

4.2 Changing Your Position

In Partiview, there are two ways to change your position, either fly to a specified location, or use the

jump command to instantly go to a point (x , y , z).

Determining your Position In order to see information on your current position, the where command

generates a report to the Console Window. By typing

where

Partiview generates four lines of information describing your position. These are

camera at xw yw zw (w) xg yg zg (gN)

looking to x̂w ŷw ẑw (w) x̂g ŷg ẑg (gN)

jump xw yw zw Rx Ry Rz scale
c2w: axx axy axz 0 ayx ayy ayz 0 azx azy azz 0 xw yw zw 1
c2obj: bxx bxy bxz 0 byx byy byz 0 bzx bzy bzz 0 xg yg zg 1

where x , y , z are the values of your current position, x̂ , ŷ , ẑ are unit vectors that describe the forward

direction vector, Rx , Ry , Rz are the rotation angles about the x , y , and z axes, and the c2w aij and

c2obj bij coefficients describe a transformation matrix from camera (your view) to world coordinates.

The w subscript signifies a number that is relative to the world coordinates, while a g subscript is relative

to the active data group gN .

If we look at Partiview without any data and only the Point of Interest marker in our view, we can

explain some of these numbers. The red axis points in the +x direction, the green axis points in the +y

direction, and the blue axis points in the +z direction. The x̂ , ŷ , ẑ values are unit vectors (they add to 1)

that describe your forward vector. For example, if you line up squarely on the red axis, so that you’re

looking down the red axis and the blue and green axes form a plane parallel to your viewing plane, then

the forward direction is just about all in the negative x direction, so x̂ should be very close to −1, with

very small components in the y and z directions. Similarly, flip 180◦ and x̂ would be +1. Position

yourself at a 45◦ angle in all directions, and x̂ ∼ ŷ ∼ ẑ.

Resetting the Camera Position You can reset the camera position using the keyboard shortcut keys

cw in the Viewing Window (type the letter c, then w in the Viewing Window, not the Command Line).

This transports you to this location (as reported by where):

4.2. CHANGING YOUR POSITION 39

(x , y , z) = (0, 0, 3)
(x̂ , ŷ , ẑ) = (0, 0,−1)
(Rx , Ry , Rz) = (0, 0, 0)

looking down the +z axis from 3 distance units away with the +x axis pointing to the right and the +y

axis pointing up.

Jumping to a new position If you’d like to go instantaneously to some point in the data, you may use

the jump command to specify an x , y , z and Rx , Ry , Rz of your choosing. Let’s define these rotation

angles Rx , Ry , Rz more throughly. If you reset the camera position (with the cw keys), then the rotation

angles are all zero. In Rotate Flight Mode, rotate with the right mouse button so that the x (and y) axis is

about 45◦ from where it was after resetting. Now, issue the jump command with no arguments and you

will see that the value of Rz is around 45◦. You have rotated about the z axis (which is pointing directly

at you) by about 45◦.

Reset the camera position again. Now, in the Orbit Flight Mode, rotate about the x axis by placing

the mouse at the top of the y (green) axis and pulling down along this axis with the left button pressed.

This should keep the x axis stationary. Now, we expect the value of Rx to change since we’re rotating

about the x axis. Does jump prove us right?

As another example, if you’d like to go 10 units out the x axis and look back on the Point of Interest,

you will need to set (x , y , z) = (10, 0, 0) and (Rx , Ry , Rz) = (0, 90, 0). Why must Ry = 90◦ and not 0◦?

Well, reset the camera position using the cw keys. Now, imagine increasing your x position by 1 unit

(i.e., moving in a direction parallel to the +x axis by one unit). What will happen? The Point of Interest

will move to the left 1 unit since we’ve moved the camera to x = 1. Using jump first inspect your current

position: (x , y , z) = (0, 0, 3). Now, move one unit out the x axis (maintaining your z position) using this

command:

jump 1 0 3

The rotational angles will remain the same if they are unspecified. As you see, the Point of Interest has

moved off to the left and we have not changed the direction we’re looking. We only moved a few steps to

the right, without moving our head.

40 4. CHANGING GLOBAL PROPERTIES

4.3 Field of View

In any graphics package, there exists a space inside which your data is displayed. In Partiview, this

space is shaped like a pyramid. You are looking from the tip of the pyramid and everything you see in

the Viewing Window is inside its walls. This pyramid can have a small height from base to apex,

rendering it relatively flat, or its height can be large, rendering a tall, slender pyramid. The width of the

pyramid is set by the field of view command (fov).

In order to examine the field of view in Partiview, we are going to draw a sphere that is made up of

latitude and longitude lines at 10◦ intervals, then look out from the center of that sphere. This is

somewhat complicated, but provides a visual understanding of the field of view, as well as an

introduction to drawing ellipsoids.

The ellipsoid data command is one of the more complex commands. Rather than get bogged down

in that command now, we will draw a simple ellipsoid and explain the command in more detail later in

this guide.

First, let’s start Partiview without any data (or start with a data set pre-loaded and turn off all the

data). We will draw a sphere around our Point of Interest that has a radius of 1,000 units and vertices

every 10◦ in both latitude and longitude. This is achieved via the command

add 0 0 0 ellipsoid -r 1000 -c 18 -s wire -n 36,19

where we have chosen a color index of 18 (referring to the default color map), a wire-frame drawing

style, the number of longitude lines to be 36, and the number of latitude lines to be 19 (this number

includes the poles). This gives us a sphere with lines every 10◦.

Now, change the clipping planes (we discuss this in the next section) to accommodate the sphere

using the clip command

clip .1 100000

and pull away so that you see the entire sphere.

Next, let’s draw an object in the xy plane so we can easily see which line of latitude is the equator.

The object we draw will be a flat, disk-shaped object with the z radius equal to zero. Draw this via

the command

add 0 0 0 ellipsoid -r 1000,1000,0 -c 18 -s wire -n 36

4.3. FIELD OF VIEW 41

This places a round plane (Rx = 1000, Ry = 1000, Rz = 0) with 36 vertexes in the x and y directions,

drawn with the wire style.

Now jump back to the Point of Interest using

jump 0 0 0

(or use the Home Toggle Button) and notice the bright white line along the equator (you may have to

pan around a little). It’s brighter because the two ellipsoids are drawn on top of one another. In the Fly

Flight Mode, move the equator down so that it is at the bottom of your display. You may need to rotate it

level (switch to Rotate Flight Mode and use the right mouse button) and switch back to Fly to move it

down again.

Because these lines of latitude are in 10◦ intervals, you can count how many degrees the field of

view is from the bottom of the Viewing Window to the top. The number of degrees from top to bottom

should equal the value for the field of view. Let’s be sure we know what the field of view is by setting it to

40◦ using the command

fov 40

Now you should count 40◦ from top to bottom (you may need to pan a little to see all the lines). Note,

you can also change the field of view using the Field of View Slider.

Allowable values for the field of view range between (but are not equal to) 0◦ and 180◦. If you

change the fov to 90◦, you should be able to see the pole and the equator (provided the pole is at the

top of the Viewing Window and the equator is at the bottom). Obviously, this begins to distort the view

pretty severely.

Let’s load the Test Data by reading the test.cf file to see the effects on the data display. This will

reset the field of view, but that’s okay—we can check the current value, then turn the ellipsoids off using

these commands:

add filepath [path to partiview]/data/mandata

read test.cf

fov

ellipsoid off

We see that the field of view is 50◦. Also, you might have noticed that we didn’t use the add command

in front of the ellipsoid off command. This is actually a control command version of the ellipsoid

42 4. CHANGING GLOBAL PROPERTIES

command. We discuss the difference between these in “Spheres and Ellipsoids.” Briefly, ellipsoid off

turns the ellipsoids in the active data group off. Use the ellipsoid on command if you wish to

re-display them.

If you set the field of view back to 90◦ and pan around the sky in Fly Flight Mode, you will notice the

distortion on the edges of the display. Change the field of view to something impractical, like 160◦, then

see the resulting effect. Finally, turn the ellipsoids back on and fly around to see the effects on the

entire display.

4.4 Clipping Planes

We mentioned in the previous section that Partiview draws data inside a pyramid and the location of the

triangular sides of that pyramid (the limit of your peripheral vision) are determined by the field of view. In

this section we will discuss the apex and the base of the pyramid. These are called clipping planes in

computer graphics and are set using the clip command.

When we said the view is specified by a pyramid, we were not 100% correct. In reality, the tip of the

pyramid has been removed, leaving the pyramid with a flat top. This flat plane, parallel to your screen, is

called the near clipping plane, while the base of the pyramid is called the far clipping plane.

The clip command takes the floating point arguments nearplane and farplane. The nearplane

argument is the distance from your screen to the near clipping plane, the top plane of the pyramid.

Nothing will be drawn between your screen and this near clipping plane, so you will want this to be a

small value. farplane is the distance from your screen to the base of the pyramid. Beyond this plane,

nothing is drawn. You want this value to be large enough to include your data. The units of these

arguments are in the units of your data set. For example, if we’re looking at stars, the units might be in

light-years.

Experimenting with the clipping planes To experiment with setting the clipping planes, let’s start the

Sample Data. If we assume the units of these data are in meters, then typing

clip

will report the current values of 0.1 meters and 100,000 meters for the near and far clipping planes,

respectively. This means the height of our pyramid is 100,000 meters minus 0.1 meters. These values

4.4. CLIPPING PLANES 43

are set in the sample.cf file and are reasonable values based on the scale of these data. However,

let’s change these values and see the effects.

Watch the data as you change the near clipping plane to 10 meters by typing:

clip 10

(Notice that we did not specify the farplane argument—Partiview assumes the current value if the

argument is not specified.) Upon typing this command, the Point of Interest and a few nearby points

disappear. They are within 10 meters from your vantage point.

Now fly forward or backward from your current location using the right mouse button. Notice how

data appear if you’re flying backward, or disappear if you’re flying forward. If you increase the near clip

to some large value, you would expect more and more data to disappear as the near clipping plane

approaches the far clipping plane.

Now perform a similar exercise for the far clipping plane. Let’s change the clipping planes back to the

original values of 0.1 and 100,000 so that we recall the original view, then change the far clip plane to

100 using these commands:

clip .1 100000

clip .1 100

A significant number of data points have disappeared since we have brought the far clipping plane

closer to us. Here, our pyramid is very flat, with a height of only 100 meters.

Note, we can also change the far plane without having to know the near plane. If you substitute a

non-numeric character for the nearplane argument, it will remain the same. For example, change the far

clipping plane to 10,000 using this command:

clip - 10000

This leaves the near clipping plane at 0.1 meters and changes the far clipping plane to 10,000 meters.

Clipping and your computer OpenGL behaves differently for different graphics cards and operating

systems. Without being experts on this subject, there are a few issues that have been noted with

Partiview. One is that on some computers, any nearplane value under 1 produces unpredictable results.

If data or polygons aren’t being drawn as you expect, try setting the near clip to 1. Also, if the ratio of

44 4. CHANGING GLOBAL PROPERTIES

farplane to nearplane exceeds 10,000, this may produce unwanted effects, such as the blinking of

distant particles. However, most modern hardware has no problem with a high clip plane ratio.

4.5 Point of Interest

Let’s start with a fresh version of the Test Data by restarting Partiview. The Point of Interest is the point

about which orbiting and rotating take place. It is marked with the red, green, and blue, Cartesian axes

(assuming censize > 0), where red is the +x axis, green is the +y axis, and blue is the +z axis. The

location of the Point of Interest sets the flight scale in the logarithmic flight modes (zero speed on the

point and increasing speed as one moves away from the point), as discussed in “Flight Controls.”

Adjusting the Size of the Point of Interest If you wish to adjust the size of the Point of Interest, this is

accomplished using the censize command. Typing censize without any arguments reports the current

size of the Point of Interest. Inside the config file, this size is set to 0.5, and this is what Partiview should

return. However, if you wish to increase the size to span the cube, set the size to 1 using the command

censize 1. Conversely, if you want the Point of Interest marker to disappear, set the size to 0.

Selecting a New Point of Interest Next, let’s move the Point of Interest. Set the Point of Interest size

to 0.5 again and choose a particle that you want to set as the Point of Interest. There are two ways to

set the location of the Point of Interest equal to that of a particle’s location. While placing the cursor on

top of the particle, either

• Press the [Shift] key while you click the middle mouse button on a three button

mouse

• Press the [Shift] key while you type the letter p

Try this with a few points. You might notice that if two points are close together, then Partiview may have

trouble choosing which point you want. In this case, move the data around a little to isolate the point.

You will see a remnant of the original Point of Interest at (0, 0, 0), this is normal.

Setting the Point of Interest If you know an x , y , z location where you want to place the Point of

Interest, you may enter it via the center or interest commands. These commands are identical and take

4.6. RESIZING THE VIEWING WINDOW 45

x , y , z values to set the Point of Interest to some arbitrary point. Try this by setting the Point of Interest

to a point outside the data cube, like

center 2 0 0

Now the Point of Interest should be above the data cube along the red axis and you will now orbit about

this point.

4.6 Resizing the Viewing Window

Partiview can run at any screen size you wish. In this section, we will discuss how to change the size of

this window and how to separate the GUI from the Viewing Window, allowing you to run Partiview full

screen without the appearance of the GUI.

Changing the Window Size The window size can be set to your liking using the winsize command.

This command takes the optional arguments xsize and ysize. Start a Partiview session and let’s

experiment. If we type

winsize

Partiview will report the current window size. To set the size, supply the xsize and ysize arguments;

for example,

winsize 400 400

sets the window to be square. We mentioned that the ysize argument was optional. If left out, the same

aspect ratio is maintained when given a new xsize. Try decreasing the window size with an xsize of 200,

and see if the window remains square.

winsize 200

The window does indeed remain square—Partiview reports a window size of 200 by 200.

46 4. CHANGING GLOBAL PROPERTIES

Setting the Window Location The location of the Viewing Window on your screen is set using the

±xpos±ypos arguments. These arguments set the location of the screen in pixels from either the top

left corner (using the ‘+’ arguments) or the bottom right corner (using the ‘−’ arguments). For example,

if you want the Viewing Window to appear in the upper left corner with a small space between the

window and the edge of the screen, you might set the xpos to 20 and ypos to 40 in the command:

winsize 300 400 +20+40

Note that the window begins at the top of the GUI and does not include the window bar at the top

that your operating system attaches on. Using a minus sign in place of the plus signs would move the

window in the lower right corner of your screen.

Separating the GUI from the Viewing Window To separate the GUI from the Viewing Window, type

the command detach at the Command Line and Partiview will separate into two windows. This allows

for more flexibility in distributing windows on your screen. Both winsize and detach are control

commands so, if you wish to issue them in a file, you will need to preface them with the eval command.

Running Partiview Full Screen By now, you have probably figured out how to run Partiview in full

screen mode. Simply set the winsize to be your screen resolution and use detach to move the GUI off

screen or minimize it to the bottom. Try this by issuing the commands

winsize xsize ysize +20+20

detach

replacing your screen resolution for the xsize and ysize arguments. You can now minimize the GUI or

place it at the bottom of the screen, setting the window to be “always on top” if your operating system

allows it.

With the GUI minimized and out of sight, it is still possible to type commands into Partiview. You gain

access to the Command Line via the [Tab] key—control is switched such that the Command Line has

focus once the [Tab] key is pressed. Let’s make the window smaller using the winsize command

along with [Tab] in this way:

[Tab]

winsize 500

4.7. EXPORTING THE DISPLAY 47

This should reset the Viewing Window to be 500 by 375. This process can be used to enter any

command, whether you want to change particle luminosity, the size of the Point of Interest, or the color

of an object.

The .partiviewrc File Your window setting, and other preferences, can be placed in a config file called

.partiviewrc. Partiview reads this file on startup before reading any other files (like .cf or .speck

files). Depending on your operating system, creating this file can be difficult, particularly for Windows.

We suggest creating and saving the file in a text editor. In addition, Windows and Macintosh consider

filenames beginning with a period to be hidden system files, further complicating this little file’s

existence. . In UNIX-based environments, this is trivial though.

Once you have this file, you can place the winsize and detach commands in it to run all Partiview

sessions full screen. Other commands can also be placed in this file as long as you want them to apply

to all data you display. For example, you could set the field of view here, or your initial position. This file

must be in the same folder that contains the Partiview executable file for it to take effect. We often use

this file to start Partiview in full screen and either move the file out of the Partiview folder or rename it

when we want to run in work mode.

4.7 Exporting the Display

It is sometimes useful to save the graphics output from Partiview by taking a screenshot. You can do

this using the snapset and snapshot commands.

The snapset command sets the output filename for the image. Output images are written into a

compressed Portable PixMap (.ppm) file by default. However, other image types can be saved (tif,

jpeg, bmp, etc.) provided you have the convert(1) program installed and in your path (this applies to

UNIX-based systems (Linux and Macintosh), Windows users will need to convert the image using

another image processing program or install a UNIX emulator).

The snapset command takes the filestem argument. You simply supply an ordinary name, to which

Partiview will append the frame number (starting at zero) along with the file extension (.ppm) then the

gzip compression extension (.gz). Try this in Partiview with these commands:

snapset foo

snapshot

48 4. CHANGING GLOBAL PROPERTIES

You should see a file in your Partiview folder called foo.000.ppm.gz. More details on these

commands can be found in the command listing.

5

Changing Group Properties

Each of these sections describes how you can alter the view of a particular data group. Each data group

has settings that pertain to the points, the polygons, the luminosity, and color of the particles—the

appearance of data in a particular group. There are many other group-specific commands that we will

discuss in the following few chapters.

5.1 Drawing Points

If you inspect the Test Data in Partiview, you will notice that the points that make up the cube vary in

size. This is because Partiview is intelligent in how it draws particles, taking into account your distance

from the particle to properly draw the perspective.

What determines this size though? The answer to this question will be discussed in the next several

sections, culminating in a description of the luminosity of particles. The problem is this: the commands

that affect the size (i.e., the luminosity) of a particle are dependent on knowing the commands that set

the specific attributes of the particles. However, these attributes cannot be set outside the context of the

various commands that set the luminosity. So, we have decided to introduce the specific attributes

which will then be discussed in concert with one another in the section on luminosity.

In this section, we intend to introduce those attributes that affect points, the basic graphical element

that represents data in Partiview. If you load the Test Data, you will notice that the points are displayed.

These can be turned off either by clicking on the Point Toggle Button (green indicates the points are on),

49

50 5. CHANGING GROUP PROPERTIES

or using the points command. This command by itself toggles the points on and off, or you may append

the on or off commands (as in points on) to explicitly tell Partiview to turn the points on or off.

We can set the range of apparent sizes for the points using the ptsize command. The range can be

defined using the minpixels and maxpixels arguments. If you type

ptsize

Partiview will report to you the current settings on the range from minpixels, representing the faintest

points that will ever be drawn, to maxpixels, which represents the brightest points that will ever be

drawn. We say “that will ever be drawn” because this sets the size of points across all luminosity

conditions, from up close and bright to far away and dim. What you are setting with ptsize is the range

of pixel sizes in which points will be drawn and this depends on the distance to the point as well as its

intrinsic brightness. If the luminosity settings determine that a point’s size is less than minpixels, then

that point will not be drawn.

The Test Data is pre-loaded with the command ptsize 0.05 10, which produces points that range

in size from 0.05 to 10 pixels. Of course, when you view the Test Data, you aren’t seeing points of size

0.05 pixels. However, if you zoom away from the data cube, you will see the points shrink smaller and

smaller until they disappear altogether.

Experiment with the ptsize command arguments using the Test Data by initializing your view with

these commands:

label off

censize 0.1

slum 0.001

jump 0 0 10 0 0 0

This should make the points extremely small (you may even have to squint to see them or increase their

slum value a little). If you adjust the maxpixels argument,

ptsize - 100

you will notice that nothing happens to the points. This is consistent since the points are far away; we

are seeing the effect of the minpixels argument as the points fade out. So, let’s adjust the minpixels

argument up to 0.5 from its current 0.05 value using the command

5.1. DRAWING POINTS 51

ptsize 0.5

The maxpixels argument will remain the same if nothing is specified. You will notice the points get

brighter, but some of the points disappear or turn on and off if you are orbiting around the cube. Now

make minpixels equal to one:

ptsize 1

Now you will see that the points get brighter (larger) but more of them disappear. What is going on here?

Partiview computes the size of a particle based on its luminosity settings and distance. Those

particles that have computed sizes smaller than minpixels are randomly subsampled. This is to prevent

having hundreds of points of equal luminosity and distance pop on simultaneously as you fly through a

complex data set with thousands of points. With a random subset chosen, they pop on gradually and

less conspicuously. If you continue to increase minpixels by intervals of 1, you will see different

subsamples displayed.

How can you prevent this from occurring? As with everything in this section, it depends on a

combination of factors. If you want your data to fade out gradually as you fly away from it, then you will

want to set a low minpixels argument. If you want large points, then you’ll want to set the luminosity

factors high. For example, if you are seeing a subset of points now, increase the slum factor by moving

the Slum Slider up a little. The points now have enough intrinsic luminosity so that their computed size

is greater than minpixels.

Generally, a good minpixels value is around 0.05, while the maxpixels size is more aesthetic,

depending on how prominent you want the points to appear. It is likely that your graphics card will

impose some upper limit to the point size, perhaps as low as 10 pixels.

Rendering the Point Points can either be drawn as squares, which are more efficient for your

computer to draw, or circles, which are more computationally taxing to draw. These two rendering

settings can be toggled using the fast command. Starting with a fresh Test Data session, or slumming

the current particles up so that all points are clearly visible and large, type

fast

and the points should become squares with the report fast on followed by the ptsize settings. Issuing

this command again will toggle back to fast off, drawing round points and telling you this is the better

52 5. CHANGING GROUP PROPERTIES

rendering option, although it comes at a performance cost.

Because points are somewhat limited in their use, we will now discuss how to place a polygon on a

point, giving you more power in how you choose to display your data.

5.2 Placing Polygons on Points

A polygon is a two dimensional, multi-sided surface. In Partiview, polygons can be used to pictorially

represent different data types, emphasize a particular data attribute, such as size or orientation, or even

to build three dimensional objects. In this section, we will explore how to place polygons on points and

alter their characteristics.

Let’s first explore polygons by starting Partiview without any data pre-loaded. Once you have

Partiview up, add a data point at the origin and set some parameters for that point, such as:

add 0 0 0

lum const 1

slum 1

color const 1 1 1

censize 0

With the Point of Interest axes off, you can see our lone white point (although it may be quite

dim—you might need to move closer to see it). Now, let’s turn on the polygons using the Polygon Toggle

button. Nothing happens. Why?

Sizing Polygons using polysize First check the size of our polygons using the polysize

command. Type

polysize

to see that Partiview reports zero. Let’s try setting the size to 1:

polysize 1

Has the entire display turned gray? Perhaps this is too large, let’s fly out a bit and find the edges of the

polygon. Okay, now we can at least see the edges of the polygons, although it seems awfully large.

How does the polygon size relate to our coordinate system?

5.2. PLACING POLYGONS ON POINTS 53

Let’s explore the size ratios to discover the scale for polygon size. First, let’s change the number of

sides the polygon has. If you issue the polysides command, without its integer argument, you will see

that the default is 11. Let’s change this to 4,

polysides 4

making it a square. Now, set the Point of Interest size to 1 and see how large the axes become relative

to the polygon

censize 1

We see (if we fly away from the origin) that the unit distance is tiny relative to our polygon (recall if we

set the center size to 1, the length of each axis from the origin is 1). With the lum const, slum and

polysize all being equal to one, something must be creating this large size, or the poly size is just

naturally larger.

Is the poly size an order of magnitude larger? Try

censize 10

This seems to work, so with the luminosity settings all equal to one, and the polygon size equal to one,

the actual size of the polygon in our coordinate system seems to be 10 units of half-length. If our theory

is true, we should be able to increase or decrease the lum const, slum, and/or the polysize by an

order of magnitude to see if this relationship is true. Let’s increase the lum by a factor of 10 and

decrease the slum by a factor of 10.

slum 0.1

lum const 10

Does the size of the polygon stay the same relative to our center size? Yes. Also, try setting the

lum const up and see if an increased center size matches:

lum const 1

slum 1

lum const 10

censize 100

Similarly, an order of magnitude increase in size with an order of magnitude increase in luminosity via

the commands

54 5. CHANGING GROUP PROPERTIES

polysize 0.1

censize 10

also scales properly. So, we now know the size of the polygon relative to the luminosity and luminosity

scaling factor and can size the polygon according to this formula. The table below shows how the

various elements affect the size of the polygon.

Table 5.1 – Scaling relationship between lum const, slum, and polysize
which determine the size of polygons. We adjust the luminos-
ity and its scaling factor to keep polysize equal to 1. If the value
of polysize were 0.1, then the actual size would decrease by a
factor of ten and, similarly, if the value of polysize were 10, then
the actual size would increase by a factor of ten.

polysize lum const slum Actual Size of Polygon

1 1 10
10 1 100

1 1 10 100
10 10 1000
1 100 1000

To have small polygons on data that are bright, increase the lum and slum values and set the

polysize to be very small. To have large polygons on data that have low lum and slum values, increase

their polysize.

Sizing Polygons According to a Data Variable In addition to setting the polygon size explicitly using

the polysize command, you may also assign a column in your data to represent the polygon size. This

is accomplished using the polylumvar command. If you type

polylum

Partiview will report polylumvar point-size, meaning the size of the polygon is being set according

to the luminosity of the particles (as we discussed above). However, you can set the size of the polygon

to scale from some data variable by specifying the datavar name. So, for example, if you start the

Sample Data set and turn the textures off (use the Texture Toggle Button) so that you have a view of the

5.2. PLACING POLYGONS ON POINTS 55

square polygons, you can set the size of these polygons based on a column in the data file. Let’s get a

report of the defined data variables in the file by typing

datavar

Since the coloridx seems like a reasonable range (1–10), we will change the polygon size to scale

to these values with the command

polylum coloridx

This increases the size of the polygons, each one sized according the the value of the coloridx data

variable. Fly out of the data set to see all of the various sizes that belong to each color. Now the polygon

size depends on the color, rather than the distance from each point. So, you may find a large white

polygon and a small purple polygon at similar distances, but their polygon size is different. Type

polylum point-size

to return to sizing by distance.

Setting the Properties of the Polygon Use the polysides command to set the number of sides a

polygon is drawn with. The default value is 11, which draws round-ish polygons. However, the most

computationally efficient polygon shape to draw textures on is a square; therefore, if you’re drawing

textures on your polygons, use polysides 4 if appropriate. Values for the number of sides on a

polygon range from 3 (triangle) up to 16 (sometimes called a hexadecagon).

The Opaqueness of the Polygon The opaqueness of the polygon can be set using the alpha

command. alpha takes on values between 0 and 1 with a default of 0.5. A value of 0 corresponds to

zero opaqueness (complete transparency or invisibility) and a value of 1 corresponds to a polygon that

is completely opaque (and block your view of anything behind it). A value of 0.999 will make the polygon

quite bright without making it fully opaque. Try setting alpha to 0.2 to see more transparent polygons.

Also, try using the Alpha Slider to quickly adjust the transparency.

The polyminpixels Command The polyminpixels command allows you to set limiting sizes that

restrict the size of a polygon or determine when the polygon should be drawn. The minpixels argument

56 5. CHANGING GROUP PROPERTIES

sets the minimum size in pixels that a polygon must be before it is drawn. The maxpixels argument sets

a clamp on the size of the polygon so that increasing the luminosity beyond this threshold will not

increase the size of the polygon.

Setting the Polygon Orientation By default, polygons face the screen at all times; however, you can

fix their orientation in space if that is desired. This is useful when texturing polygons that represent a

fixed object.

The polygon orientation is specified in the data file as a series of 6 numbers that describe two

orthogonal vectors, ~u and ~v , in the plane of the polygon. The first of these 6 columns is defined in a

datavar command and the orientation is set using the polyorivar command. A typical data file might

look like:

datavar 0 lumin

datavar 1 color

datavar 2 txnum

datavar 3 orient

texturevar txnum

polyorivar 3

0 0 0 10 2 1 1 2 0 -2 1 0

1 1 1 40 1 1 1 0 1 0 1 0

where the first three columns are x , y , z, the fourth is the luminosity, the fifth is the color index, the sixth

is the texture number, and finally columns 7–12 are the 6 numbers that make up the orientation of the

polygon. Notice how the datavar and polyorivar commands are used to define the orientation

information. Some sample orientations are shown in Table 5.2.

If you wish to have a mixture of screen-facing polygons along with specific orientations within one

data set, you may use all 9s to specify that you want a particular polygon to be screen-facing.

You may also toggle between screen-facing and specified orientations using the polyorivar

command at the Command Line. Typing

polyorivar -1

toggles to all polygons facing the viewer. You may go back to your orientations by using the datavar

number specified in the data file. Using our example above, you would type:

polyorivar 3

5.3. DRAWING TEXTURES ON POLYGONS 57

Table 5.2 – Examples of the ~u and ~v vectors that determine the polygon ori-
entation.

ux uy uz vx vy vz Polygon Orientation

1 0 0 0 1 0 xy plane
1 0 0 0 0 1 xz plane
0 1 0 0 0 1 yz plane
0 1 0 0 0 10 yz plane with Rz = 10× Ry

1 0 1 0 1 0 rotated about y axis by 45◦

1 2 0 -2 1 0 rotated square about the z axis
9 9 9 9 9 9 Polygons are always facing the screen

If you specify any number other than −1, Partiview will assume the orientation information begins at that

column. For example, if you entered polylumvar 0 the orientation of the polygon will be determined

by columns 4–9, whether the data are relevant or not.

5.3 Drawing Textures on Polygons

Often we wish to represent a class of objects as a single polygon so that they are easily seen. However,

sometimes we want to place a texture on our polygon to create a sense of realism. In this section we

will describe how to place a texture on a polygon and discuss some of the basic settings that determine

how the texture will be drawn.

Adding Textures To add textures to your polygons, all you need to do is include one or more texture

data commands in the data file. The texture data command takes as arguments the image file name

and texture number you want to assign that image to (as well as many options which are discussed in

the command listing. Then, along with the datavar and texturevar commands, the textures are drawn

on the specified polygon. For example, your data file might look like this:

datavar 0 txnum

texturevar txnum

texture 30 image1.sgi

texture 31 image2.sgi

0 0 0 30

1 1 1 31

-1 -1 -1 31

0 0 2 30

58 5. CHANGING GROUP PROPERTIES

where we have defined data variable zero as the column to hold our texture information as specified by

texturevar. As a warning though, there appears to be a bug in the software in that it doesn’t always load

the correct texture or it will load two textures and display them under various luminosity conditions. This

may be due to the ordering of texture numbers in the data. A possible solution involves insuring the data

are ordered by texture number, but no thorough investigation has occurred on this bug.

Turning textures on and off The easiest way to turn the textures on and off is to use the Texture

Toggle Button. However, the texture Control Command will also toggle the textures on and off. This is

accomplished by issuing

texture

in the Command Line or within a config file. You may append the on or off commands to texture as

well. Note that the command in the previous paragraph to assign a texture number to an image file is

the Data Command and would require an add preface if used at the Command Line.

Scaling Textures Textures can be scaled to fit their polygon, appear small, or appear large,

overflowing the polygon edge. The command to change the texture scaling is txscale. The default value

is 0.5, which is a perfect fit (the image is fitted to the polygon) if the number of polygon sides is 4. Using

a texture scale smaller than this will stretch the image so that it overflows the polygon size and is

truncated at the polygon’s edge. Using a scale larger than 0.5 shrinks the texture on the polygon.

Typically, there is no need to change this value from the default 0.5.

5.4 Setting the Luminosity of Particles

When we talk about the luminosity of a particle, we are really referring to its size, or more specifically,

how large or small the graphics engine draws the point. You may have particles that you want large

when they are nearby, but disappear when they reach a certain distance. You may want your polygons

to disappear at some distance but your points to remain visible far away from the viewing location. The

size of the points and often the polygons are subject to a combination of settings that determine its

overall luminosity. We will begin by describing each of these commands and then wrap up at the end

with a discussion on our approach to luminosity in Partiview.

5.4. SETTING THE LUMINOSITY OF PARTICLES 59

The lum const Command The lum const command sets all particles in the active data group to a

constant luminosity specified by the optional argument L. Here the size is directly proportional to the

value of L.

The lum datavar Command Rather than set all particles to a single luminosity value, it is often useful

to set the size of the points relative to some attribute of the data (like intrinsic brightness, for example).

This is achieved using the lum datavar command. Provided you have a column of data that represents

the luminosity, you may set the size of your particles to be proportional to the value of these data. If you

have defined a data variable in the data file, such as

datavar 0 lumin

then you can use that to set the luminosity using the command

lum lumin 0 1

which reads the data in the column pointed to by lumin and renormalizes it over the range 0–1. The

default for min max are the minimum and maximum values of the data variable, however, if the

range 0–1 is specified, then the column data are renormalized over those values.

To explore these two types of lum commands, let’s bring up the Complex Data. If you type

lum

Partiview will report lum-by 0(lumin) 0 1 [0.5..50 mean 25.1 over 27]. Translation: the

luminosity is being read from data variable 0, called lumin, and ranges over 0 to 1. The actual lumin

data in the file ranges from 0.5 to 50 and has a mean of 25.1 over the 27 data points. Now, set the

particles to a constant luminosity of 1

lum const 1

Now all the particles have the same size, disregarding perspective effects. You may toggle back and

forth between a constant luminosity and one set by the data variable lumin by issuing the commands

lum lumin

lum const

lum lumin

60 5. CHANGING GROUP PROPERTIES

Luminosity Scale Factors Given the luminosity from either of these two lum commands, a scaling

factor is multiplied to brighten all or a portion of particles in the data group. These scaling factors are:

psize This command is a global scale factor on the luminosity. If you type psize in the

Command Line it will report the current value of this scale factor. A small value will

draw the points smaller, reducing the range over which the points can be seen. If

you’d like to be able to fly far away from your data while continuing to see the points,

then you’ll want a high value for psize. When you are setting the luminosity with the

lum const command, psize is essentially equal to the lum const value. For example,

the particle size will be equal if lum const is 1 and psize is 10 and if lum const is 10

and psize is 1. Note that psize has no effect on the size of the polygons.

slum This is a scaling factor that is relative to a particular data variable. For example, in

the Complex Data, we have defined the lumin and coloridx data variables. We can

set a slum scaling for each of these data variables in the following commands:

lum lumin 0 1

lum coloridx 0 1

Each of these “lums” can have separate scalings via the slum command. Let’s set

these scalings first by selecting the lum we want to scale, then setting the scaling

factor using slum:

poly on

lum lumin

slum 0.1

lum coloridx

slum 0.5

You may notice that the size of the points vary depending on the value of the data

variable. In the lum lumin case, all the points appear to be the same size since their

slum value has saturated our ptsize settings. However, with the smaller slum value

in the lum coloridx case, we see that points of higher color indices have higher

luminosity. The polygons show the effects of these slum values clearly. Although the

coloridx slum value is higher, the polygons are smaller due to the intrinsic

brightness from the coloridx data in the file.

Particle Sampling If you are sampling your data using every, the remaining particles will

be brightened to keep the total brightness the same.

5.4. SETTING THE LUMINOSITY OF PARTICLES 61

Distance of the Particles Partiview determines the distance from the viewer to the particle then

computes the light fall off. This fall off in the brightness can be computed in several ways. Using the

fade command, you can set this fall off to the following options:

planar is a 1/r2 light fall off with the distance measured from the view plane.

spherical is also a 1/r2 light fall off but with r measured as the true distance from the

viewpoint (center of your screen). This is the default.

linear refdist provides a 1/r light fall off that, while not physically relevant, can be useful

for sense of depth and entertaining questions like: What would the world be like if the

light fall off law was 1/r instead of 1/r2?

const refdist sets a constant distance for all particles that is independent of the actual

distance.

To see the difference between these, the fade command can be issued as

fade planar

fade const 10

fade linear 2.5

fade spherical

Typically, this command is not needed since the default gives the correct inverse square law for light.

The “Final” Luminosity Each of these commands discussed above are considered in the final

luminosity calculation to determine the size of the particle. The formula may be expressed:

Apparent Brightness =
psize× slum× Sampling Factor× lum

(Particle− to− Camera Distance)2

where the slum value is that of the current lum variable, the lum value is that of the data variable

linearly mapped, and the particle-to-camera distance is affected by the fade command.

How do you set these values for your data? Consider everything we’ve discussed in these past few

sections that directly or indirectly affect the particle size and brightness: ptsize, polysize,

polyminpixels, alpha, polylumvar, fade, lum const, lum datavar , psize, slum, every—am I missing

any? With all of these settings and options, what is the best way to set the brightness of your data?

62 5. CHANGING GROUP PROPERTIES

Let’s eliminate a few of these options right away. If we’re not using the every command, then the

Sampling Factor will be 1 and our overall luminosity will not be determined by these factors.

The ptsize range is an intrinsic property of the points and should be set to your aesthetic. Typically

one wants point sizes that fade to small sizes as the distance increases and have a maximum size that’s

not too large. Typical min-max values are 0.05 to 5.

The fade is correct to 1/r2 by default, so we need not worry about the denominator.

Considering points, not polygons, we only need to adjust the lum, psize, and slum values. These

three values balance one another to produce the final particle size. Let’s assume that the lum value is

either set to a constant 1 or set to the data-specific luminosity value. Then, the final two parameters to

set are the psize and slum values.

Given the difference between psize and slum, the former being a global scale factor while the latter

is a data variable-specific scale factor, we should first set the psize value so that all particles appear

more or less as we would like to see them. Next, we should use the slum factor to fine-tune the

brightness, particularly for polygons. Once polygons are added to the equation, some of your values

might have to be adjusted. However, psize does not affect the size of the polygons, so slum and

polysize should be used together to get the right polygon size and brightness.

These are our general guidelines for setting the brightness of data. Typically, if you’d like to see your

data from afar, you will want a high value for psize. Additionally, you can set a minimum size for

polygons using polyminpixels which will alter the apparent brightness of the particles at larger

distances.

5.5 Coloring Particles and Objects

There are three fundamental ways in which data and objects are colored in Partiview. The simplest

method is to give your data a constant color using the color const command. Another, more

complicated method involves giving each particle its own color via a data variable using the color

datavar command, which then refers to a column of data in the data file or a separate color map file.

Finally, one can color an object (not particle data) using the cment command.

5.5. COLORING PARTICLES AND OBJECTS 63

To begin our exploration of color, let’s load the Complex Data and give the points a high luminosity

with this command:

lum const 1000

As you can see, the particles are multi-colored.

Setting a Constant Color Let’s replicate what we saw in the Test Data and make the particles all one

color. This is accomplished using the color const command:

color const 0.5 0.5 0.9

for a nice gray-blue color. Partiview reports that you are now coloring-by rgb 0.5 0.5 0.9,

meaning it recognizes that we are setting a constant color to all particles.

Setting a Color Variable A color variable for each particle can be set within a .speck file. If you

inspect the complex.speck file (or issue the datavar command to get a report on the data variables

defined in that file), you will notice that data variable 1 holds the coloring information for each point.

Using the color datavar command, change from a constant color to assigning colors from that

column via

color coloridx

Since coloridx refers to datavar 1, you may also refer to this number rather than the name in an

equivalent command color 1. However, we recommend learning data variable names since data

columns can change. With this command, Partiview reports: coloring-by 1(coloridx) exactly

(cindex=data+0; data 0..6, cmap 0..7). This means that Partiview is coloring the data exactly

according to data variable 1, called coloridx. Exact coloring means that the color index for a point will

exactly match the color indexes in the color map file.

If you inspect the coloridx data, you will notice the correlation: a value of zero for the center point,

a value of 1 for the x = 1 plane, and a value of 2 for the x = −1 plane. The coloring is consistent, but

where are the actual colors coming from? To answer this question, we need to understand color maps.

64 5. CHANGING GROUP PROPERTIES

Creating a Color Map For the Complex Data, we have created a simple color map file called

complex.cmap where we define a group of colors. A color map file takes the form R G B alpha with

the number of colors in the file appearing in the first line. The complex.cmap file looks like this:

8

0.5 0.5 0.5 0.3 # 0.gray

1.0 0.0 0.0 1.0 # 1.red

0.0 1.0 0.0 1.0 # 2.green

0.0 0.0 1.0 1.0 # 3.blue

1.0 1.0 0.0 1.0 # 4.yellow

1.0 0.5 0.0 0.6 # 5.orange

0.0 1.0 1.0 1.0 # 6.aqua

1.0 1.0 1.0 0.3 # 7.white

We see that the file begins with the number 8, then lists eight colors. Comments are also allowed in the

file (anything after the #). Particles can be colored as an exact match to the color entries, or distributed

over a range using the entries as a guide.

Using a Color Map A color map file is read in using the cmap command. In the Complex Data, the

center particle (coloridx = 0) is gray, the x = 1 plane (coloridx = 1) is red, and so on.

There are two ways to use a color map file. One method involves using the color datavar exact

command to use the exact colors in the color map file, while the other method distributes the coloring

over a continuous range that is based on the color map file.

The Complex Data is loaded using exact coloring which is set in the complex.cf file. If you want to

color the particles over a continuous range, type the command:

color coloridx -exact

The -exact part of this command removes the exact coloring and colors the particles over a continuous

range. In this case, the range has been unspecified and defaults to the range of the coloridx data

variable. You can specify that the colors be distributed over half the range using this command:

color coloridx 0 3

5.5. COLORING PARTICLES AND OBJECTS 65

Summing up the commands:

color datavar 〈exact | -exact〉 [baseval] Color particles by mapping one-to-one the color datavar to

the color index in the color map file. For example, data with a coloridx of 2, will be colored

green (using the complex.cmap file), data with a coloridx of 7 will be white, and so on. Also,

out of range values are assigned to the first or last entry in the file. For example, a coloridx

of 30 will be colored white.

If you use negative values, the colors will be re-scaled according to where the negative value

appears in your data. Any data prior to this point will be colored gray, the first entry in the color

map file. We recommend using positive values for your color variable for more predictable results.

If you wish to start at some base color other than the first color in the file, then you may use the

baseval option. For example, try setting the baseval to 2, and see what happens to the data.

Now, data of coloridx = 0 will be mapped to the third color in the file. The rest of the colors

follow from there, adding on one from the base. The values of coloridx that are attempting to

reference colors that are not in the color map file will be given the last color and treated as out of

range, so they will be colored white in our example color map file. If you were to start at

baseval = 7, then all the points would be colored white.

The exact and -exact toggle exact coloring on and off, respectively. Exact coloring correlates the

colors set by the datavar from the data file and the contents of the color map, given there’s no

baseval set. With exact coloring off, colors are now distributed over a continuous range (just as

color datavar [minval maxval] is). Type the command

color coloridx -exact

to turn off exact coloring. Note that using the color datavar [minval maxval] command after

using exact coloring will not remove the exact coloring, you must use the color datavar -exact

command.

color datavar [minval maxval] Color particles using datavar . By default (without the min max

arguments), the colors are mapped to colors between the second color and the n − 1 color in the

color map, in this case red to aqua. The first and last colors (gray and white in this file) are used

for out of range values. If we supply the minval maxval arguments, the colors are mapped over

this range. For example, if we issue the command

66 5. CHANGING GROUP PROPERTIES

color coloridx 1 7

we replicate the coloring of the exact command (if you issued the -exact command prior). Note

that the center point is gray not because we are assigning it that color, but because it is out of

the 1–7 range, and, therefore, receives the first (out-of-range) color. If we adjust the maxval range

down to 6, you will notice that the last point (x , y , z) = (0, 0,−1) is out of range, so it changes from

aqua to white. Continue shrinking the range to 1–5. Now, you see a major shift in color. Now, all

points in the yz plane (aside from the point on the origin) change color as the distribution is over a

smaller range, making fewer colors available. Continue shrinking the range and see

what happens.

Customizing a Color Index There are times when you want to set the color of one index value. The

command to do this is cment. This command can be applied in many situations: coloring particles,

objects, labels, and boxes. For example, let’s say we want to change the x = −1 plane from green to

purple. First, set the coloring of the particles back to exact using the command

color coloridx exact

Since we can see from the data file that the x = −1 plane points have the coloridx value of 2, let’s just

assign that color index a different color via the command

cment 2 1 0 1

This sets the color index 2 to the color purple (R, G, B) = (1, 0, 1).

We will also use this when defining objects like ellipsoids, meshes, and other objects. Let’s draw a

sphere and assign it the color green. Define a new data group called sphere, then draw a green sphere

using the commands:

g2=sphere

add 0 0 0 ellipsoid -r 100 -c 20 -s wire -n 36,19

cment 20 0 .7 0

You may notice that if you try to define a color index of 20 in group 1, Partiview would have told you

the color index was out of range. This is due to the fact that the data group is using the complex.cmap

color map that has color indices ranging from 0–7. There are similar commands for adding color to

labels and boxes, which we discuss next.

5.5. COLORING PARTICLES AND OBJECTS 67

Coloring Text There are two commands needed to color text in Partiview. The color is set using the

textcment command and assigned to that color index using the textcolor command. We define a text

color index in the config file complex.cf using the command

textcment 1 .2 .4 .6

We then issue the command

textcolor 1

in the data file, complex.speck, where the labeling data is located. This command tells Partiview that

the labels should be colored according to color index 1. While the textcolor command cannot be

entered at the Command Line, textcment can be altered interactively. Knowing that the color index of

the text color is 1, you can alter the color by reassigning the color from the bluish color to an orange

color (provided you have the correct group selected) using the command

textcment 1 .6 .4 .2

To change the color index number, you must change the argument of the textcolor command in the

data file, then re-load the data file.

Coloring Boxes Let’s create a box around our sphere that’s centered on the point (x , y , z) = (0, 0, 0)

and with half-lengths of 100:

add box -n 1 -l 4 0,0,0 100,100,100

A blue box appears; the -l 4 argument sets the color index to 4 which is blue in Partiview’s default

color map. We can change this color via the boxcment command. Similar to the cment command, we

can change the color to red by issuing the command

boxcment 4 .7 .1 .1

We can also color the box according to a color map file by reading that file using the boxcmap

command. Change the box color to read from the file using this command:

boxcmap complex.cmap

68 5. CHANGING GROUP PROPERTIES

Now the box color, still set to a color index of 4, is yellow, according to the 4th color of the color map file.

Finally, the box axes can be highlighted to show the fundamental red, green, and blue axes by using

the boxaxes command.

boxaxes on

adds a red, green, and blue fade to the x , y , and z axes, respectively. To change back, just toggle the

boxaxes off.

5.6 Label Properties

Including labels in Partiview is quite simple. To add a label anywhere in space, include a line in a data

file (or issue it interactively at the Command Line with the add preface) that has this format:

x y z text your label

The text command will place the label your label at the point (x , y , z). These lines can either be

included in a .speck file or in their own file with the .label extension. By default, each label is

displayed with its label axes, a local red, green, blue axes, aligned to the world coordinates. These can

be turned off using the laxes off command. The labels themselves can be toggled on and off using the

Label Toggle Button or the labels command.

Setting the text color If you wish to change the text color from the default white, you may use the

textcment and textcolor commands. textcment allows you to assign a color to a color index, such as

textcment 14 0 1 0

where we assign the color green to color index 14. Once we’ve set a color index, we then use the

textcolor command to assign the color to a color index, like

textcolor 14

Using these two commands allows us to set the text color for a given data group. Currently, there is no

way to introduce a column that represents the text color. If you want several text colors for the labels

5.6. LABEL PROPERTIES 69

within one data group, you will have to define multiple color indices with textcment and set the color

with textcolor then list those labels you want with that color. Following that will come the next block of

textcolor, data lines, etc.

Setting the Size The size of your labels can be set using the labelsize, or lsize, command. The value

of lsize is relative to the world coordinates. If you set lsize to be 1, then the entire label (including the

height of capital letters and those that dip below the rule, like ‘y’ or ‘g’) will be one unit high. For

example, start up Partiview without any data, then add a label at the origin by issuing this command at

the Command Line:

add 0 0 0 text My Label!

Now set the center size and the label size to be equal

censize 1

lsize 1

and fly away to see the entire label. You can see that the height from the bottom of the ‘y’ to the top of

the ‘M’ is about 1 unit.

Turn off the label axes using laxes off.

By default, the size of a label depends on its distance from you. Nearby labels will appear larger than

those far away. If you wish to alter this relationship between label size and distance, then you may

specify a value in the text command. For any label data, instead of 0 0 0 text (0, 0, 0), you can

specify that this point’s label be twice the size of all other labels in the data group using this command:

0 0 0 text -size 2 (0, 0, 0)

Setting the minimum label size Using the labelminpixels command, you can set the minimum size

in pixels above which a label will be displayed. This is often useful to reduce label clutter in the display.

For example, setting a labelmin of 8 means you are only drawing labels of 8 or more pixels in height.

The labelmin value is, of course, dependent on the value of lsize. If lsize is high, then labelmin will

need to be higher if you want to draw only the larger labels.

6

Drawing Objects

In addition to displaying particles, Partiview can also draw objects that add context to your data. These

include boxes, spheres, ellipsoids, and meshes. For each of these objects, there exist Data Commands

and Control Commands. For example, the Data Command box sets the dimensions and displays a box.

The Control Command then toggles the box on and off. This is true for all the objects we will describe in

this section.

6.1 Boxes

There are two types of boxes in Partiview: a normal box and a clip box. A normal box is one that simply

exists in space without affecting the data group it belongs to. A clip box, on the other hand, defines a

box outside of which data are not drawn, thereby highlighting a portion of data within a given data group.

In this section, we will discuss the normal box, leaving the discussion of clip boxes to

“Creating Data Subsets.”

Drawing a box Let’s start by drawing a box around the data cube in the Test Data set. The data

extend from −1 to +1 in all directions and, rather than draw the box on the points, let’s draw one just

outside these points using the boxes command. boxes takes a few arguments, namely the coordinates,

the box color, and the box number. The coordinates can be entered in one of two ways. Either using the

center point along with the x , y , and z half-lengths, or using the minimum and maximum values for x , y ,

70

6.1. BOXES 71

and z. If we were to draw a box using the center point and half-lengths that encompassed the data

cube, we would use

add box -n 1 -l 1 0,0,0 1.2,1.2,1.2

This produces a box that is numbered 1 (-n 1), colored blue (-l 1), and is located just outside the Test

Data cube (at x = y = z = 1.2) centered on the point x = y = z = 0. An equivalent command using the

minimum and maximum pairs would be

add box -n 1 -l 1 -1.2,1.2 -1.2,1.2 -1.2,1.2

Let’s set the Point of Interest marker to zero (censize 0) so that it’s not in the way.

Turning Boxes on and off Because the above command is a Data Command, we must preface it with

the add command when we want to enter it in the Command Line. The boxes Control Command

toggles a box on and off. Typing

box

will toggle the box between the on state, the only state, and the off state. The on and off state are

self-explanatory. The only state turns the points off, leaving the box on. Note that if the polygons are on,

then the they will remain displayed while the points are turned off. These states can also be toggled

using the Boxes Toggle Button. Left-clicking on the button will toggle between the on and off state.

Right-clicking on the button will provide you with a menu to choose from one of these states. The button

will appear green in the on state and red in the only state.

Displaying the Box Label While its usefulness may be debated, the box number can be shown as a

label at the center of the box. By turning on boxlabel, the label (the number 1 since we specified a -n 1

in the box definition) will appear in the center of our box. More practical is a user-customized label that

is relevant to the purpose of the box. For example, we may want to call these data the “Center Data,” in

which case we can add a label manually (or in a data or config file). To do this interactively, type the

following in the Command Line:

add 1.25 1.25 1.25 text Center Data

You will need to have the labels on for the label to appear.

72 6. DRAWING OBJECTS

Creating Multiple Boxes Of course, you may create a number of boxes within one data group and

multiple boxes in multiple groups. When you create a box, always be mindful of the active data group as

the box will belong to that group. One of the powers of multiple boxes within one data group is that

boxes can be grouped by their color. To experiment with this, let’s start Partiview with the Sample Data.

This provides us with a larger data set to work with. Increase the center size to 100 so that we can see

our coordinate axes.

Let’s create several boxes of various colors by typing the following commands.

add box -n 1 -l 10 10,10,0 10,10,10

add box -n 2 -l 15 -10,0,-10 10,5,5

add box -n 3 -l 10 -50,20,10 40,10,5

add box -n 4 -l 10 -50,-25,0 20,10,60

add box -n 5 -l 25 -20,-40,10 2.5,35,2.5

Clarify the view by turning off the points and polygons, reducing the Point of Interest axes to 10, and

turning on the box labels. This is most easily accomplished using these commands:

points off

poly off

censize 10

boxlabel

Showing and Hiding Boxes We can toggle a subset of boxes on and off by using their color index set

with the -l option. Using the showbox and hidebox commands, we will turn off all boxes using

the command

hidebox 10 15 25

Now, turn on the three boxes of the same color index

showbox 10

Or, turn off these boxes and show the other two

hidebox 10

showbox 15 25

This is how you can use several boxes to highlight portions of data that are related to one another.

6.2. SPHERES AND ELLIPSOIDS 73

Coloring a Box Like coloring particles, coloring a box can take place via a color index which refers to

a color map file, or the color index can be set interactively for that data group using the boxcment

command. If we desire to change the color of those boxes that have the color index 10 to orange, then

we would type

boxcment 10 0.7 0.4 0

(use the showbox 10 command if they are currently hidden). We can also color boxes using defined

colors in a color map file, see the discussion in “Coloring Particles and Objects.”

Scaling Boxes All boxes defined in a data group can be scaled using the boxscale command. This

command takes a floating point value to describe the scale factor by which the size of the box will

increase or decrease. For example, to double the size of all boxes, then return to the defined size, then

quarter the size, issue these commands and see what happens.

boxscale 2

boxscale off

boxscale 0.25

boxscale 1

Note that boxscale off and boxscale 1 are the same. Also, the labels do not scale, you may want

to turn them off using boxlabels off.

Changing the Point of Interest to Box Center The Point of Interest can easily be shifted to the

center of a box using the gobox command. This command takes the box number that you want to bring

into focus by moving the Point of Interest to its center. If we bring the labels back, then we can shift the

Point of Interest around via the commands:

gobox 4

and so on for the other boxes defined with the -n boxnumber option and argument.

6.2 Spheres and Ellipsoids

Spheres and, more generally, ellipsoids, can be used in Partiview to represent structural elements,

coordinate systems, and even planes and lines (we’ll explain). The ellipsoid data command is

74 6. DRAWING OBJECTS

somewhat complicated for two reasons: one is the fact that the parameters to define an ellipsoid are

complex, another is that there exists both a Data and Control version of the command. However, we

expect that by the end of this section, you will have a good working knowledge of the

ellipsoid command.

Control Command: State Change The ellipsoid Control Command is fairly self-explanatory and has

two arguments:

ellipsoid [on | off]

If an ellipsoid has been defined for a particular data group, using ellipsoid on or ellipsoid off will turn

the object on or off (assuming the data group for which it is defined is the active data group). As for

defining the parameters of an ellipsoid, you’ll use the Data Command for that.

Data Command: Drawing an Ellipsoid The ellipsoid Data Command defines the parameters of the

ellipsoid and takes the form:

[add] xcen ycen zcen ellipsoid [-r xrad [,ycen,zcen]] [-c colorindex]
[-s 〈solid | plane | wire | point〉] [-n numlong[,numlat]] [transformation]

An ellipsoid is defined by its center point and its radii in the x , y , z directions. In a data file, the control

command would be prefaced by the eval command and this data command would appear without the

add preface. Start up the Test Data and define a new data group

g2=ellipsoid

Now, let’s draw a simple ellipsoid centered on (0, 0, 0) with radii of (xrad , yrad , zrad) = (5, 10, 15).

add 0 0 0 ellipsoid -r 5,10,15

This will cause the screen to go gray. If you pull away from the data, you will see that a white, solid

ellipsoid has been drawn (increase the center size to see the proper perspective). This is not really what

we want though. The default style is solid, but we want to change that to wire so that we can see the

entire ellipsoid. Also, let’s change a few other attributes.

6.2. SPHERES AND ELLIPSOIDS 75

Define another group and let’s set ellipsoid colorindex to 5, its style to wire, and the number of

latitude and longitude lines to 30. The command looks like:

add 0 0 0 ellipsoid -r 5,10,15 -c 5 -s wire -n 30

This results in a somewhat odd looking object, but we now see the wire-frame ellipsoid.

The style argument can either be solid, plane, wire, or point. Define another group and issue the

above ellipsoid command trying these styles. (Just define a new group in the Command Line, then hit

the up arrow key to scroll up to the ellipsoid command, where you can use the arrow keys to edit

the line.)

If you try the other styles, you will find that plane draws three ellipses in the x = 0, y = 0, and z = 0

planes. The point style draws points at each vertex. These can often be difficult to see though. You

should change the alpha value to 1 and choose a color that will stand out, like yellow. If you’ve already

defined your ellipsoid using the colorindex of 5, simply change the color for that colorindex using the

cment command—cment 5 1 1 0 will change it to yellow. It also helps to have a lot of vertices, so

numlat and numlong should be large.

Drawing a Sphere To draw a sphere, you simply want the three radii for the ellipsoid to be equal. If

you supply only one radius, the other two will be set equal to it. For example

add 0 0 0 ellipsoid -r 10 -c 5 -s wire -n 30

will draw a sphere of radius 10. If we want to use a sphere for mapping coordinates, then it’s useful to

draw lines of latitude and longitude at intervals that make sense. To draw lines at 10◦ intervals, the

number of longitude lines would be 36, while the number of latitude lines would be 19. You probably

were expecting 36 for a 360◦, but where does 19 come from? For the lines of latitude, you must take

into account the two poles. If you want lines every 15 degrees, then use the option -n 24,13.

Drawing a 2-D plane Using the ellipsoid command, you can actually draw a circular, two-dimensional

plane. This can be done by setting one of the radii to zero. For example, re-start Partiview with the Test

Data. Now, let’s draw an ellipse in the xy plane out to 1 unit of distance. Turn off the labels, then run

this command

add 0 0 0 ellipsoid -r 1,1,0 -c 16 -s wire -n 36

76 6. DRAWING OBJECTS

You may want to adjust the alpha level so that the plane is more subtle. Unfortunately, the grid lines are

not as useful as they would be if they were evenly spaced. However, this can be useful for

demonstration purposes.

Drawing a Line Finally, if we set two radii to zero, we get a line. Turn off the plane by typing

ellipsoid off

in the Command Line. Now, let’s draw lines from point to point. First, try to draw a line from

(x , y , z) = (1, 1, 1) to (1, 1, 0). This would put the center at (x , y , z) = (1, 1, 0.5) and the zrad at 0.5

(halfway between 0 and 1). Let’s try it.

add 1 1 0.5 ellipsoid -r 0,0,0.5 -c 10 -s wire -n 30

The unfortunate thing is that lines cannot be drawn off plane. They can, however, be drawn then

transformed using the tfm command. However, this is not a viable solution for line drawing in Partiview.

It makes more sense to draw lines using the mesh command which we discuss below.

6.3 Meshes

Meshes are used to draw lines from one point to another. A mesh offers the flexibility to draw virtually

any shape within Partiview, from a line between two points to complex, three-dimensional grids

and surfaces.

The mesh command is typically used in a file and takes the form:

mesh -t texnum -c colorindex -s style {
numu numv

x1 y1 z1 u1 v1

x2 y2 z2 u2 v2

...

xN yN zN uN vN

}

where the mesh command is issued with the -t, -c, and -s options (see below). After the mesh options

is an open curly brace followed by numu numv , which specifies the dimensions of the mesh.

6.3. MESHES 77

If you wish to draw a line between points, then numu will be 1 while numv will equal the number of

points to connect. If you want a square, 4000× 4000 grid with lines every 200 units, then numu numv

will both equal 21. The data points (x , y , z) as well as the optional u and v coordinates for texture

mapping are listed below these dimensions. The mesh command is concluded with a closing

curly brace.

The -c option sets a colorindex that points to a color set using the cment command. The -t option

loads a texture whose texnum is set using the texture command. Finally, the -s option sets the style of

the mesh. The style can take the following values:

solid draws a filled surface,

wire draws a wire-frame connecting each of the vertices,

point draws a point at each vertex, leaving them unconnected.

For example, start Partiview with the Test Data and load the file mesh.speck via the command

read mesh.speck

You will see a few meshes appear and upon inspection of the mesh.speck file, you will notice that there

are three mesh commands. The first connects seven points into the pyramid whose apex is at y = 0.

The second is a square grid in the xz plane, and the third draws a solid mesh in the y = −1 plane upon

which the blue ring texture is placed. Use this file as an example for other meshes you’d like to create.

7

Creating Data Subsets

This section describes commands and functions in Partiview that allow you to display a subset of

particles within one data group. These subsets can be random, specified over a range, or display data

from a specified data variable. Once you have subsets you’d like to keep, they can be saved in selection

expressions, then easily toggled on and off.

7.1 Displaying a Random Subset

You can display a random subset of particles using the every command. every takes an integer

argument that signifies the number of data points to sample. For example, using the Sample Data, fly

out and increase the slum value so that you can see most of the data points in your view (that is, you

are essentially outside the data set, but you can still see most of the particles). If you issue the bound

command, you should see that the Sample Data has 10,420 specks, or particles. The default is to

display every one of these particles, which corresponds to the command every 1. To display every

second particle you would type

every 2

and so on. As you type in higher numbers, you will notice the number of particles decreasing. every

reports the current status back to you, for example, for every 2, the report is

display every 2th particle (of 10420)

78

7.2. CLIP BOXES 79

which is written to the Console Window upon issuing the command, or by issuing the every command

without an argument.

As you type in higher and higher numbers, the data will retain its shape, but will be more sparse. If

you enter every 100, you will still notice a spherical distribution, but with far fewer particles. You may

also notice the particles increasing in brightness. This is because the overall apparent brightness

remains the same, thus the remaining particles must brighten to compensate.

7.2 Clip Boxes

A clip box differs from a normal box in that all particles outside the defined box are not drawn—the data

are clipped. Clip boxes are defined in a similar fashion as boxes are in Partiview. The command

clipbox, or its equivalent shortened version cb, are Control Commands that define a clip box. To

explore how clip boxes work, load Partiview with the Sample Data.

Defining a Clip Box We can specify the dimensions of a clip box in the same way we specify the size

of a box. Use either the center point along with half-lengths in the x , y , and z direction, or specify the

minimum and maximum in each of these coordinates. For example, using the Sample Data, we can see

what the extent of the data are in each direction using the bound command. Issuing this command will

report the information about the data in the format:

num specks in range xmin ymin zmin .. xmax ymax zmax (object)

midbox xcen ycen zcen boxradius xlen ylen zlen (object)

mean xavg yavg zavg (object)

This gives you all the information you need to draw a box. Let’s draw a clip box centered on the point

(x , y , z) = (0, 0, 0) and half-lengths (or radii) of 50 in the x and y directions and 100 in the z direction.

This can be achieved using either of these commands:

cb 0,0,0 50,50,100

cb -50,50 -50,50 -100,100

Note the difference in our use of commas in these two commands. The placement of commas and

spaces (or lack of) are important for these commands.

80 7. CREATING DATA SUBSETS

Turning a Clip Box On and Off To turn the clip box on or off, use the cb on or cb off commands. If

you would like to hide the clip box while retaining the data clipping, you may use the cb hide command

to remove the box. However, if you have polygons on, they will remain visible in hide mode—you may

turn the polygons off if you wish. cb off will bring all the data back into view.

7.3 Thresholding Data

If you think of a clip box as defining data thresholds in x , y , and z, the thresh command allows you to

threshold particles according to data variables you define via the datavar command. The thresh

command takes several forms, so let’s explore these one by one using the Sample Data.

Reporting the Data Variables Let’s fly out so that we can see most of the Sample particles in our

view. You will likely have to increase the brightness (slum value) of the particles using the Slum Slider.

To get an idea of what data variables are available for threshing, issue the datavar command without

any arguments (you may want to stretch the Console Window in Partiview by placing your mouse at the

base of the Command Line and pulling down to expand the size of the Window). datavar will report

each data variable that is defined in the .speck file in the format:

datavar num name min.. max mean meanvalue [default]

You can see that the zeroth data variable, coloridx, ranges from 1 to 10 with a mean of 5.5 and

Partiview sets the zeroth data variable to be the color.

Thresholding on color If we want to threshold on the color, we should familiarize ourselves with the

Sample color map file sample.cmap. You will see that color 0 is red, 1 is green, 4 is orange—you can

check the file. Since our color indices range from 1 to 10, there will be no red particles. Let’s threshold

these data by color. If you want to see just the particles with a color index of 1, then we would type

thresh coloridx 1 1

which displays all the green particles. To see both green and blue: thresh coloridx 1 2. We can

also refer to the data variable number, 0, in the thresh command as well. Let’s see this by viewing the

aqua particles, then the purple particles in these commands

thresh coloridx 5 5

thresh 0 6 6

7.3. THRESHOLDING DATA 81

We do not recommend using the data variable number when referring to a variable since columns within

a data file can shift between data processing iterations.

Upon issuing the thresh command, a report is written to the console in the form:

thresh varnum (name) min minval max maxval (num of total selected)

where varnum is the data variable number that corresponds with the name, minval and maxval are the

minimum and maximum values of the thresh, and num is the number of particles displayed out of the

total . To return seeing all the particles, use the see command

see all

which will return all particles to view.

Threshing data according to some value Instead of providing a minimum and maximum range over

which to threshold data, it is also possible to threshold data above or below a given value. For example,

let’s threshold these particles according to the value of its label (data variable label). We can see from

datavar that the values range from 0 to 120,250. Let’s look at all the particles that have a label less

than 10,000. We can see these particles using the command

thresh label < 10000

Now, increase this value to 40,000 so that you’re only seeing particles below label = 40000. Now let’s

reverse it using the > sign so that we’re seeing all particles above label = 40000 using

thresh label > 40000

In this way, we can thresh over a range given one value from the data.

Seeing all your data To return all the particles in the group to view, you can either use the thresh

command without specifying min and max values, you can replace the min and max values with

dashes, you can use the thresh datavar off command, or you can use the see all command. Each of

these would be executed in the following way:

thresh label

thresh label - -

thresh label off

see all

82 7. CREATING DATA SUBSETS

Reversing the Thresh You can reverse the thresh results by using the command see -thresh as well.

For example, if you thresh on label to see all data with label < 50000, you can reverse the thresh,

that is, see all data with label > 50000 by issuing

see -thresh

We will talk more about the see command and setting up selection expressions with thresh later in

this chapter.

7.4 Selecting Data with Specific Values

The only command allows you to select a subset of a data group based on particular data attributes.

When we do a thresh datavar 2 2, we are choosing only those particles with the values of the data

variable datavar equal to 2. There is a more sensible way to do this using the only commands.

Choosing particular values to display If you wish to pick out portions of a data group according to

particular values of a data attribute, the only= command is what you want to use. The command has

the form:

only= datavar 〈 value | minval maxval | <maxval | >minval 〉

Let’s try using this command by selecting only the particles in the Sample Data with a coloridx of 6

via the command:

only= coloridx 6

Now, we can select a range of values like the colors 2,3,4,5 and 8 using this command:

only= coloridx 2-5 8

Also, you can select data using the greater-than and less-than signs, as in:

only= coloridx < 7

only= coloridx > 7

only= coloridx < 2 > 8

7.5. SELECTION EXPRESSIONS 83

although this last statement seems better suited for the thresh command. With the last command, we

are viewing only those particles of coloridx 1,2,8,9, and 10. Now, let’s alter the selection of just

these data.

Choosing a subset from a subset Once an only condition has been defined, data can be further

added or subtracted from the current subset by using the only+ and only- commands. These have the

same arguments as the only= command above, but they add or subtract particles from the current

data subsample.

Let’s thresh on the luminosity of the particles. Out of the subset of data we have now, let’s remove

those particles that have a luminosity less than 50. Typing datavar will show you that the lumin data

variable ranges between 10 and 100 and has an average of about 50. So, we are asking for the brighter

particles from those that have a coloridx of 1,2,8,9, or 10. Executing

only- lumin < 50

removes the dimmer points, further shrinking the data subset that is displayed. Now, let’s add some

data in. Say we want to see the dimmest points along with the brighter ones. Let’s add some data using

the only+ command:

only+ lumin < 20

Now, the number of points increases as expected. These three commands allow for complete

customization of data display.

7.5 Selection Expressions

The sel command defines a selection expression that allows you to save a data threshold, then re-issue

the named selection expression later with the see command.

To demonstrate this command, let’s start Partiview with the Sample Data set. If we issue the

datavar command, we can see that we have a color, luminosity, and label variable. Let’s threshold the

data by color via the command

only= color 4

84 7. CREATING DATA SUBSETS

This displays the orange particles, of which there are just over 1,000. Now, let’s save this setting to a

selection expression called “orange” using the command

sel orange = thresh

Refine the displayed data by removing dimmer data using the command

only- lumin < 80

and call this “brightorange” in the command

sel brightorange = thresh

Now, we can toggle between these modes using the see command. The see command takes one

argument, the name of a selection expression. There are several pre-defined selection expressions: all,

none, and thresh. Let’s return all the Sample Data to view using the command

see all

Now we can toggle our saved expressions in these commands

see orange

displaying only those particles with color = 4. Now, we can see only the bright particles using the other

expression we defined earlier

see brightorange

If we have only one threshold for a data set, we can use see thresh to toggle between seeing all the

data and only the threshed data.

Selection expressions are best defined in config or data files to pre-load different views of your

data set.

8

Statistical Reports

Partiview has a few utilities that report general statistical information about the data displayed for a

particular group. We describe these in this section.

8.1 The Spatial Extent of the Data

The spatial characteristics of a data group are printed to the Console Window when the bound

command is used. If we open the Complex Data and type the command

bound

Partiview will report several lines of information about the data group. The format of the report is:

num specks in range xmin ymin zmin .. xmax ymax zmax (object)

midbbox xcen ycen zcen boxradius xrad yrad zrad (object)

mean xavg yavg zavg (object)

where num is the number of data points, xmin, xmax are the minimum and maximum points in the x

direction, xcen ycen zcen is the center of the data distribution, xrad yrad zrad are the half-lengths of the

data distribution, and xavg yavg zavg are the averages for each coordinate.

Appended to the end of each line of the report is the coordinate system to which these numbers are

relevant. Without an argument, bound reports the 3-D extent of the data in object coordinates, the

85

86 8. STATISTICAL REPORTS

coordinate system defined by the data itself. So, for the Complex Data, we see that the particles range

from −1 to +1 in each coordinate with the center and mean at (0, 0, 0). If the command

bound w

is run, then the report is in terms of the world coordinate system. This produces the same report in the

Complex Data, however, if we transform these data using the tfm command

tfm 4 4 0 0 0 0

then rerun bound, you will see that the report reflects the original data values. Running the bound w

command accounts for the newly transformed data values.

8.2 Generating a Histogram of the Data

A histogram of a data variable within a data group can be generated with the hist command. Using the

Sample Data, let’s explore how this command works. hist takes the form

hist [-n numbins] [-l] [-c] [-t] datavar [minval] [maxval]

where

-n numbins sets the number of bins for the histogram (default = 11),

-l sets the intervals to be logarithmically-spaced,

-c counts only the particles displayed within a clipbox,

-t counts only particles in a subset defined by thresh or only=,

datavar is the data variable to return the distribution for,

minval is an optional minimum value for the distribution range, and

maxval is an optional maximum value for the distribution range.

8.2. GENERATING A HISTOGRAM OF THE DATA 87

To see how this can be useful, let’s generate some histograms of the Sample Data on a data variable

we’re familiar with, the color index coloridx. Recall that these values range from 1 to 10 and are fairly

evenly distributed since the mean value is around 5. Let’s see how many are in each color with

hist -n 10 coloridx

This should report:

hist -n 10 0(coloridx) 1 10 =>

Total 10420, 0 < min, 0 > max, 0 undefined, 0 clipped, 0 threshed

0 < 1

1007 >= 1

1026 >= 2

1070 >= 3

1060 >= 4

1059 >= 5

1024 >= 6

1071 >= 7

1009 >= 8

1083 >= 9

1011 >= 10

0 > 10

which makes sense with an even distribution between 1 and 10. Now, we could reduce the distribution

of the histogram in half by specifying only 5 bins

hist -n 5 coloridx

which now creates bins that are wider, that is, provide less resolution on the data. We can also specify

logarithmically-spaced bins with the -l option, as in

hist -n 5 -l colorindex

If we thresh these data according to luminosity, as in

thresh lumin 50 100

we can now get a histogram on just the subset of data by including the -t option

hist -n 10 coloridx -t

88 8. STATISTICAL REPORTS

Note that once data are threshed and the -t argument is used, the results from hist will reflect the

current threshold, even if you re-enter the command without the -t option. To return a histogram of all

the data, use the see all command, then enter the hist command.

If we have defined a clip box, we can use the -c option

hist -n 5 -c coloridx

to generate a histogram based on the remaining unclipped data, whether the clip box is on or off.

Providing a minval sets the minimum value of the data variable to begin the histogram while maxval

sets the upper limit on the histogram. Try entering

hist -n 10 coloridx 2

This will report that there are 1007 points with coloridx less than two and 1026 particles with

coloridx equal to two. If you run

hist -n 10 coloridx 3

you are setting the lower limit of the distribution so that now the histogram will report 1007 + 1026 ,

or 2033 particles less than 3, the base value. Similarly, a maximum value can be specified either with a

minimum value specified or with a − in place of the minval , causing Partiview to substitute it with the

minimum from the data.

Appendix A

Keyboard Controls

Table A.1 – Partiview keyboard shortcuts, typed in the Viewing Window.

Key Function

[Tab] Changes the focus to the Command Line to type a command.
[ESC] Exit Partiview (also see the exit command).

f Change to Fly flight mode.
o Change to Orbit flight mode.
r Change to Rotate flight mode.
t Change to Translate flight mode.

[Shift] Allows finer control during flight.
[Control] Modifies the Orbit Flight Mode without having to change modes.

Left button flying changes from orbit to pan.
Right button flying changes from forward/backward to rotate.

cw Resets the camera position to (x , y , z) = (0, 0, 3).
p Identifies the nearest object under the mouse cursor.

The result is printed to the Console Window.
[Shift]-p Change the Point of Interest to the selected object. This will change

the point about which rotations and orbiting take place.
s or S Toggles the stereo viewing mode on and off (see the stereo com-

mand).
[Shift]-o Toggle the Perspective Mode on and off.

v Increase the Field of View by roughly 12◦ (see the fov command).
[Shift]-v Decrease the Field of View by roughly 12◦.

89

Appendix B

Partiview Commands

This section provides an alphabetical listing of the Partiview command set. We recommend reading

Chapters 3–8 to explore each of these commands and concepts in greater detail.

Data Versus Control Commands Partiview has two distinct kinds of commands: Data Commands

and Control Commands. Control Commands are meant to be issued within Partiview, while Data

Commands are meant to be issued within a data file. However, in Partiview, any command can be

issued interactively, in a config file, or in a data file by using the proper prefix command. These prefix

commands are add for Data Commands and eval for Control Commands. In the table below, we outline

when to use these prefixes.

Table B.1 – Issuing Partiview Commands. If the command requires a prefix,
the prefix is typed before the command.

When issuing a command in. . .
The Command Line A Data File

Command Type (interactively) (pre-loaded)

Data Command Preface with add no prefix
Control Command no prefix Preface with eval

90

91

Partiview Command List This is not a complete listing of Partiview commands; however, we include

many of the commands that you will find useful. You may consult information on the Partiview web site

for more information.

Bold face page numbers mark where a concept is defined and explained. Slanted page numbers

denote where that command is controlled from the graphical user interface (GUI).

add

The add command is used before any Data Command run from the Partiview Command

Line. All Data Commands in this listing have the [add] preface shown to distinguish Data

Commands from Control Commands. add is not necessary if you are issuing the command

inside a data file.

Example Pages: 28, 74, 90

See Also: eval

alpha [+, *, /][value]

The alpha command describes the opacity (opaqueness) of an object. The value argument

ranges between 0 and 1, 0 describing no opacity (completely transparent), 1 setting

maximum opacity. The default is 0.5.

Example Pages: 22, 55

See Also: texture Data Command, lum

async command

Run a UNIX command as a subprocess of Partiview. The output of the subprocess is

interpreted as a stream of control commands. This allows Partiview to be driven externally

by another program, such as another GUI or a shell script with Partiview commands

prefaced by the shell command echo. For example, if you make an executable file called

file.sh with the commands

http://virdir.ncsa.illinois.edu/partiview/

92 APPENDIX B. PARTIVIEW COMMANDS

echo g1 on

echo g1 lsize *2

echo g2 slum *3

then these commands will be executed in sequence upon running the file via the command

async ./file.sh

issued at Partiview’s Command Line. Note that once a subprocess is started, it cannot be

interrupted unless Partiview itself is terminated.

NOTE: This command works only on UNIX-based operating systems (Linux and

Macintosh) and does not run in Windows (unless you’re running a UNIX emulator).

Example Pages: –

See Also: –

bgcolor [grayscale | R G B]

Reports the background color of the display in red, green, and blue colors. Including the

R G B arguments will set the background color. For example, bgcolor 1 1 0 will produce

a yellow background, while bgcolor 1 1 1 will give you a white background. We mostly

use a black background, bgcolor 0 0 0. Specifying only one color sets a grayscale

(R = G = B) for various levels of gray (0–1).

Example Pages: 37

See Also: color const, color

bound [w]

Reports the number of data points and the 3-D extent for the active data group. Also

reports the parameters needed for box dimensions. With the w argument, the report is in

world coordinates, otherwise bound reports in object coordinates.

Example Pages: 79, 85

See Also: clipbox, boxes Data Command

93

boxaxes [on | off]

Toggles the box axes display mode which enhances the colors of the box. The red, green,

and blue axes that are seen in the Point of Interest are reflected in the corresponding axes

on the box.

Example Pages: 67

See Also: boxes Data Command, boxes Control Command, boxcmap, boxcment,

boxlabel, boxscale, clipbox, gobox, hidebox, showbox

boxcmap filename

Selects a color map file for coloring a box or many boxes assigned to the active data group.

Refer to this color index using the -l option in the boxes Data Command.

Example Pages: 67

See Also: boxes Data Command, boxes Control Command, boxaxes, boxcment,

boxlabel, boxscale, clipbox, gobox, hidebox, showbox

boxcment colorindex [R G B]

Assign a R G B color to a color index specified by colorindex . Refer to this color index

using the -l option in the boxes Data Command.

Example Pages: 67, 73

See Also: boxes Data Command, boxes Control Command, boxaxes, boxcmap,

boxlabel, boxscale, clipbox, gobox, hidebox, showbox

box[es] [on | off | only]

If a box has been defined (see the boxes Data Command to define a box), the box[es]

Control Command toggles the box display. The on | off arguments turn the box on and off.

The only argument turns all the particles (points) off; however, if polygons are on, they will

remain displayed.

94 APPENDIX B. PARTIVIEW COMMANDS

Example Pages: 21, 71

See Also: boxes Data Command, boxaxes, boxcmap, boxcment, boxlabel, boxscale,

clipbox, gobox, hidebox, showbox, bound

[add] box[es] [-n boxnumber] [-l level] coordinates

Use the box[es] Data Command to draw a box of number boxnumber , color index level ,

and size specified by the coordinates argument. The coordinates can be specified in two

ways:

xmin,xmax ymin,ymax zmin,zmax draws a box using the minimum and maximum

values for each coordinate. These values define the 6 planes that make up the box. In

this format, the six values are written in coordinate pairs. (Note the use of commas to

separate each coordinate’s minimum and maximum value and the use of spaces to

separate the three coordinates.)

xcen,ycen,zcen xrad,yrad,zrad draws a box centered at xcen,ycen,zcen and with

half-lengths (or “radii”) given by xrad,yrad,zrad . (Note the use of commas to delineate

each center and radius value and a space to separate the center and radius groups.)

Boxes can be turned on or off using the boxes Control Command.

Example Pages: 70

See Also: boxes Control Command, boxaxes, boxcmap, boxcment, boxlabel,

boxscale, clipbox, gobox, hidebox, showbox, bound

boxlabel [on | off]

If a box was added using the -n option, then boxlabel toggles the box label on or off. The

label, which is just the box number, appears at the center of the box. If you wish to put a

more descriptive label on a box, add a label using the text command.

Example Pages: 71

See Also: boxes Data Command, boxes Control Command, boxaxes, boxcmap,

boxcment, boxscale, clipbox, gobox, hidebox, showbox

95

boxscale [scalefactor] | [off]

Scales the size of all boxes in the active data group by scalefactor . For example, the

command boxscale 2 will increase the size of all boxes in the data group by a factor of 2.

boxscale off and boxscale 1 both set the boxes to their normal size as defined by the

boxes Data Command.

Example Pages: 73

See Also: boxes Data Command, boxes Control Command, boxaxes, boxcmap,

boxcment, boxlabel, clipbox, gobox, hidebox, showbox

cb [on | off | hide] | [boxparameters]

See the clipbox command.

Example Pages: –

See Also: –

censize [+, *, /][radius]

Sets the size of the Point of Interest Cartesian marker. The units of radius depend on the

units of your data. If you are displaying data with units of meters, then censize 1 would

set each axis (from the origin to the end) to one meter. You can also scale the current value

by adding a constant, multiplying, or dividing by a constant, such as censize /2 to divide

the current size by two.

Example Pages: 22, 44

See Also: center

cen[ter] [x y z] [radius]

Sets the position of the Point of Interest at the point (x , y , z). This is the rotation point in the

[o]rbit and [r]otate flight modes. It is also the point where the three dimensional

Cartesian axes are displayed. The optional radius argument sets the size of the Point of

Interest in the same way the censize command set the size.

96 APPENDIX B. PARTIVIEW COMMANDS

Example Pages: 44

See Also: interest

clearobj

Clear all data in the current data group. This is helpful when re-loading data into a data

group. To clear all data in all groups, use the gall command before clearobj.

Example Pages: –

See Also: read, include

clip [nearplane] [farplane]

The clip command reports and sets the distances of the near and far clipping planes. The

nearplane argument sets the distance to the near clipping plane. In computer graphics, the

near clipping plane is an unseen plane parallel to your screen. Between your screen and

this plane, your data will be invisible. Similarly, the far clipping plane defines the point

beyond which no data are drawn by the computer.

The nearplane and farplane arguments must be positive. The value of these arguments

may produce unwanted effects depending on your operating system, such as flashing and

blinking. Some operating systems cannot handle a nearplane less than 1, or a farplane to

nearplane ratio over 10,000. You may need to experiment.

Example Pages: 42

See Also: –

clipbox [on | off | hide] | [boxparameters]

A clip box is a box that highlights a portion of a data set by turning off all data outside the

six planes that make up the specified box. The dimensions can be set by specifying the

boxparameters arguments. These are of the same format as the boxes Data Command

and can be given in two ways:

97

xmin,xmax ymin,ymax zmin,zmax draws a clip box using the minimum and maximum

values for each coordinate. These values define the 6 planes that make up the box. In

this format, the six values are written in coordinate pairs. (Note the use of commas to

separate each coordinate’s minimum and maximum value, but spaces are used to

separate the three coordinates.)

xcen,ycen,zcen xrad,yrad,zrad draws a clip box centered at xcen,ycen,zcen and with

half-lengths (or “radii”) given by xrad,yrad,zrad . (Note the use of commas to delineate

each center and radius value and a space to separate the center and radius groups.)

Using the on and off arguments turns the pre-defined clip box on or off. The hide argument

continues clipping the data (points only, polygons will remain on) but turns the box off.

Example Pages: 79

See Also: bound, cb, boxes Data Command

cmap filename

Loads a color map file filename for coloring particles in the active data group. For

information on color map files, see “Coloring Particles and Objects.”

Example Pages: 64

See Also: cment, color, color datavar exact

cment colorindex [R G B]

Reports the red, green, and blue values of the colorindex . If the R G B arguments are

specified, the colorindex is assigned the R G B colors. The colorindex should be a positive

number and the values of R, G, and B all range from 0–1. See

“Coloring Particles and Objects” for more information on coloring particles and objects.

Example Pages: 66, 74

See Also: color, cmap, boxcment, textcment

98 APPENDIX B. PARTIVIEW COMMANDS

color

Typing the color command without any arguments reports the coloring of the active data

group. Reports reflect whether particles are being colored using the color const or the

color datavar commands. If you are setting a constant color to all particles, then the report

will be of the form:

coloring-by rgb R G B

while coloring using a data variable generates the report:

coloring-by num (name) min.. max mean avg

Here, num and name refer to the data variable, min.. max is the range of the data and avg

is the mean value of the data.

Example Pages: 62

See Also: color const, color datavar , color datavar exact, cment, cmap, bgcolor,

boxcmap, boxcment, textcment, textcolor

color const R G B

Sets all particles in the active data group to the color R G B. Each of these range in value

from 0–1.

Example Pages: 63

See Also: color, color datavar , color datavar exact, cment, cmap, bgcolor, boxcmap,

boxcment, textcment, textcolor

color datavar [minval maxval]

Sets all particles in the active data group to be colored using the data variable datavar . If a

column of data in your data file holds the coloring information, you may define a data

variable using datavar, then use the name from that definition as the datavar argument.

The minval maxval arguments are provided to specify a mapping range in color indices.

Typically, you would want to set these to a color index between 1 and n− 1 since the zeroth

99

and last entries are used for out of range values in color maps. If these arguments are

omitted, then the actual range from the data is used.

Example Pages: 63

See Also: color, color const, color datavar exact, cment, cmap, bgcolor, boxcmap,

boxcment, textcment, textcolor

color datavar 〈exact | -exact〉 [baseval]

This color command maps one to one to the color map file for the data group. Rather than

distribute the colors over some range, the exact command maps the color index values to

their exact number in the color map. For example, if a particle has a color index of 10, then

using the exact command will set that color to the 10th entry in the color map. To turn off

exact coloring, use the -exact command. If a baseval is included, then the exact color

index N is mapped to N + baseval .

Example Pages: 64

See Also: color, color const, color datavar , cment, cmap, bgcolor, boxcmap,

boxcment, textcment, textcolor

datavar [num] [name] [minval maxval]

The datavar command attaches a variable name name to a column of data. The num

argument is just the column number minus 4 since the first three columns are always

reserved for the spatial coordinates (i.e., datavar 0 equals column 4). These definitions

should come in the .speck files before your data. The variable names can then be used to

color, set the luminosity, or threshold data. Without any arguments, datavar reports the

pre-defined data variables for the active data group. This report has the form:

datavar num name min .. max mean avg

where num is the data variable number (which maps to the column number plus 4) and

name is the name you’ve given the data variable. The minval and maxval arguments set

the range of the data. Without these arguments, the range of the data is used.

100 APPENDIX B. PARTIVIEW COMMANDS

Example Pages: 26, 34, 80

See Also: –

detach

Use detach to separate the Viewing Window and the GUI into two distinct windows.

detach, along with the winsize command, can be used to run Partiview full screen.

Example Pages: 46

See Also: winsize

disable

Same as the off command.

Example Pages: –

See Also: –

dv [num] [name] [minval maxval]

Same as the datavar command.

Example Pages: –

See Also: –

ellipsoid [on | off]

If an ellipsoid has been defined in the active data group, the ellipsoid Control Command

toggles the display on and off. To define an ellipsoid, use the ellipsoid Data Command.

Example Pages: 74

See Also: ellipsoid Data Command

101

[add] xcen ycen zcen ellipsoid [-r xrad [,ycen,zcen]] [-c colorindex]

[-s 〈solid | plane | wire | point〉] [-n numlong[,numlat]] [transformation]

The ellipsoid Data Command sets the parameters and displays an ellipsoid that will belong

to the active data group. The ellipsoid will be centered on the coordinate xcen, ycen, zcen

and is drawn with the following options.

-r xrad [,yrad,zrad] sets the x , y , z radii or semi-major axes. For a sphere (xrad

= yrad = zrad), specify a value for xrad and omit the yrad and zrad

arguments. For a plane, set one of these arguments to zero. For a line, set

two of these arguments to zero. If you omit all of these arguments, the

default is xrad = yrad = zrad = 1.

-c colorindex assigns a color index to the object. The color is derived from the

color map for the active data group. A new color may be assigned using the

cment command to change the color for the assigned color index. Without

this argument, the colorindex is set to -1, which is an out of range value

and will be assigned the zeroth color in the color map.

-s 〈 solid | plane | wire | point〉 sets the drawing style. The allowed styles are

solid a filled surface, but without any shading for perspective,

plane draws three ellipses in the xy , xz, and yz planes,

wire draws a wire frame ellipsoid, and

point represents the ellipsoid as points drawn at each vertex. A brighter

color helps make an ellipsoid of this style more visible.

-n numlong[,numlat] sets the number of vertices, or lines of longitude and

latitude in wire style. The value of numlong is equal to the number of

longitude lines while numlat is equal to the number of latitude lines plus two

(for each pole). For example, to create a wire frame sphere with lines of

longitude and latitude every 10◦, you would use the option -n 36,19.

Without the numlat option, numlat = numlong.

transformation is a series of numbers that describe a transformation of the

ellipsoid from the default world coordinates. The transformation can either

be 9 or 16 numbers separated by spaces.

102 APPENDIX B. PARTIVIEW COMMANDS

Example Pages: 74

See Also: cment, alpha, tfm, add, ellipsoid Control Command

enable

Same as the on command.

Example Pages: –

See Also: –

eval command

Executes a Control Command from a data file. All Control Commands (which appear in this

listing without the [add] preface) must have the eval preface if they are issued from a .cf

or .speck file.

Example Pages: 27, 90

See Also: add

every N

Display a random subset of the active data group by choosing every Nth particle. To display

all particles in the data group (the default), type the command every 1. every 2 shows

about half the data, and so on.

Example Pages: 60, 78

See Also: bound, lum

exit

Issue this command to quit Partiview. You may also use the [ESC] key to quit.

Example Pages: –

See Also: –

103

fade [planar | sph | linear refdist | const refdist]

The fade command describes the light fall off law with regard to distance. Typically, we use

a 1/r2 law, as it is in nature. However, we can set the intensity to distance relationship

using the following options.

planar sets an inverse square fall off (1/r2), with r measured as the distance

from the view plane (the screen).

sph is also an inverse square fall off, but with r measured as the true distance

from the viewpoint at the center of the screen.

linear refdist gives a 1/r light fall off, not physically accurate but perhaps

useful to get a limited sense of depth.

const refdist sets a constant apparent brightness that is independent of

distance. The refdist argument is defined as that distance r at which

apparent brightness should match that of an inverse square law.

With no arguments, fade reports the current fade setting. The default is spherical (sph).

Example Pages: 61

See Also: lum

fast [on | off] [minpixels] [maxpixels]

fast is a command that alters the way points are drawn. If fast is off, then the points are

drawn at a higher quality. Conversely, if fast is on, then the points are drawn more

primitively but require less computational resources. fast takes its parameters from the

ptsize command. If no ptsize has been defined for the active data group, then you may

define the range here by including values for the minpixels and maxpixels arguments. See

ptsize for more on these values.

Example Pages: 51

See Also: ptsize, lum

104 APPENDIX B. PARTIVIEW COMMANDS

[add] filepath [+:]path

A list of directory paths, separated by colons, where data files, color maps, images, flight

paths, and other necessary files are located. Include the +: argument to append path to the

current file path. For example, filepath ./data sets the file path to the data folder,

which is in the current folder. To append another path, use filepath +:./images to add

the images folder.

Example Pages: 29

See Also: read

focallen [distance]

Reports (without an argument) or sets (with distance) the focal length. The focal length

affects the stereo display (see stereo) as well as the speed of motion in the [f]ly and

[t]ranslate flight modes.

Example Pages: –

See Also: stereo

fov degrees

Sets the field of view in the local (screen) y direction to degrees. Values have the range 0◦

to 180◦. Higher values distort the view, while low values provide a “zoomed in” view. Typing

fov without any arguments reports the current value.

Example Pages: 22, 40

See Also: –

gN[=alias]

Select or create data group number N. If group N exists, typing gN will make group N the

active data group. If group N does not exist, it will be created. If you append the =alias

argument, the data group is given the name alias (no spaces between the equal sign). alias

can then be used by object to refer to data groups by name, rather than number.

105

Example Pages: 29

See Also:

gN command

Similar to the gN[=alias] command, without the command argument, group N will be

created, or selected as the active data group if it exists. The command argument can take

any relevant Partiview Control Command that you would like to apply to group N. For

example, g4 color const 1 0 0 will turn all particles in group 4 red.

Example Pages: –

See Also: –

gall -v | command

The gall command is designed to perform some action on all data groups. If you issue

gall -v, Partiview will report all the defined data groups and their display status (on or off). If

you issue gall command , then command will act on all data groups. For example, if you

want to multiply the slum value of all data groups, you would enter gall slum *2.

Example Pages: 33

See Also: gN-command

gobox boxnumber

The gobox command shifts the Point of Interest to the center of box boxnumber . The

boxnumber is designated in the boxes command using the -n option.

Example Pages: 73

See Also: boxes Data Command, boxes Control Command, boxaxes, boxcmap,

boxcment, boxlabel, boxscale, clipbox, hidebox, showbox

106 APPENDIX B. PARTIVIEW COMMANDS

hidebox level

If multiple boxes are defined, a subset of boxes can be toggled on and off using the

showbox and hidebox commands. Boxes are grouped by the level specified in the boxes

Data Command. By giving several boxes the same level number, these boxes can then be

toggled on or off while leaving other boxes unchanged. For example, if you have defined 10

boxes and five of them were defined with a -l 3 argument, then these five boxes can be

turned off using the hidebox 3 command or turned on using the showbox 3 command.

In addition, a listing of level numbers can be used, such as showbox 2 23 15 to show

boxes that have level values of 2, 15, and 23.

Example Pages: 72

See Also: boxes Data Command, boxes Control Command, boxaxes, boxcmap,

boxcment, boxlabel, boxscale, clipbox, gobox, showbox

hist [-n numbins] [-l] [-c] [-t] datavar [minval] [maxval]

Reports a histogram of the data field datavar in the Console Window. The arguments are

defined as:

-n numbins sets the number of bins for the histogram (default = 11),

-l sets the intervals to be logarithmically-spaced (as long as the data range

does not include zero),

-c counts only the particles displayed within a clip box,

-t counts only particles in a subset defined by thresh or only=,

datavar is the data variable to return the distribution for,

minval is an optional minimum value for the distribution range, and

maxval is an optional maximum value for the distribution range.

The available data fields are reported to you when you use the datavar command on the

active data group. It will return the defined data fields and their range. The order of the

arguments is important; some may not take effect if they are not issued in this order.

Example Pages: 86

107

See Also: bound, thresh, only=

[add] include filename

Read a file containing data (a .speck file) or data commands (a .cf file). If you use this in

a file, you do not need the add preface. This is the same as the read command.

Example Pages: –

See Also: read

int[erest] [x y z] [radius]

Same as the center command.

Example Pages: 44

See Also: center

jump [x y z] [Rx Ry Rz]

The jump command, without any arguments, returns the current position in the format

x y z Rx Ry Rz , where x y z is your position and Rx Ry Rz are the rotation angles of your

point of view. These three angles are rotations about the x , y , and z axes. If the x y z

arguments are included, then your position is reset to the x , y , z specified, the rotation

angles will remain the same if unspecified. For example, if you are 5 units out on the +z

axis (jump 0 0 5 0 0 0), then you can rotate the view about z by changing the Rz

parameter (try jump 0 0 5 0 0 45).

Example Pages: 39

See Also: where

label[s] [on | off]

Turns on (or off) the labels for the active data group (if labels are specified). Typing label

toggles their display, but label[s] can also take the on or off arguments explicitly. The

Label toggle button also turns the labels on and off for the active data group.

108 APPENDIX B. PARTIVIEW COMMANDS

Example Pages: 21, 68

See Also: labelsize, labelminpixels, laxes, textcment, textcolor, boxlabel

labelmin[pixels] [+, *, /][size]

Describes the minimum size in pixels before a label will be drawn. By default, the size of

the label is proportional to its distance. Set the size argument low (relative to the defined

label size), and labels will be drawn far off into the distance to the point where they are

unreadable. Set size high (again, relative to the defined label size), and labels will only be

drawn nearby.

Example Pages: 22, 69

See Also: labels, labelsize, laxes, textcment, textcolor, boxlabel

l[abel]size [+, *, /][size]

Set the size of the labels in the distance units of your data. If, for example, your Partiview

session has data that are in units of meters, then the size argument will be in meters (as

scaled by the graphics, of course). The labels in Partiview are drawn proportional to your

distance from them. The size of the labels can also be scaled by the [+, *, /], such as

lsize *2.5. The relative size of the labels within a data group may be controlled using

the -size argument in the text command.

Example Pages: 22, 69

See Also: labels, labelminpixels, laxes, textcment, textcolor, boxlabel, text

laxes [on | off]

Toggles the label axes on and off. The label axes (laxes) are an x , y , z Cartesian axis

placed at each label location. By default, they are on.

Example Pages: 68

See Also: labels, labelsize, labelminpixels, textcment, textcolor, boxlabel

109

lum

The lum command without any arguments reports the current luminosity setting for the

active data group. If the group is set to a constant luminosity via the lum const command,

then Partiview reports

lum-by constant L

where L is the value given to all particles. If the luminosity is set to a data variable in your

.speck file using the lum datavar command, then Partiview will report

lum-by num (name) [min.. max mean avg]

where num is the data variable number, name is the name given to the data variable,

min.. max is the range of your data, and avg is the mean value.

Example Pages: 58

See Also: lum const, lum datavar , slum, alpha, datavar, fade, psize, every, ptsize,

fast, polysize, polylumvar

lum const [+, *, /]L

Sets a constant particle luminosity, L, for the active data group. This command insures that

all points in the given data group have the same luminosity.

Example Pages: 59

See Also: lum, lum datavar , slum, alpha, datavar, fade, psize, every, ptsize, fast,

polysize, polylumvar

lum datavar [min max]

The lum datavar command allows for a variation in luminosity within one data group. If a

particular data group has luminosity information as part of the data set (i.e., one of the

columns in your .speck file is luminosity), then the luminosity data field datavar can be

mapped to values between min and max . Without the min and max arguments, the values

are mapped to the range of the data.

110 APPENDIX B. PARTIVIEW COMMANDS

Example Pages: 59

See Also: lum, lum const, slum, alpha, datavar, fade, psize, every, ptsize, fast,

polysize, polylumvar

[add] mesh [-t texnum] [-c colorindex] [-s 〈solid | wire | point〉]

Given a set of x , y , z points, mesh will draw a series of lines connecting the points. If the -c

colorindex argument is specified, the mesh is given the R, G, B color pointed to by the

colorindex set by the cment command. The -s option sets the drawing style according to

these styles:

solid draws a filled polygon surface (the default),

wire draws a wire-frame mesh (just lines), and

point draws points at each vertex.

The default is solid if the -s argument is unspecified. The -t texnum argument specifies a

texture number, set via the texture command, to map on the mesh. The texture is mapped

according to the u and v coordinates specified after the (x , y , z) coordinate. The u and v

coordinates range from 0 to 1, rescaling the size of the texture to this range and mapping on

the mesh. When expressing the mesh command in a file, you must use the following form:

mesh -c 1 -s wire {
numu numv

x1 y1 z1 u1 v1

x2 y2 z2 u2 v2

...

xN yN zN uN vN

}

Note the use of the opening and closing curly braces after the mesh command.

numu numv specify the dimensions of the mesh. For a line between two points, numu will

be equal to 1. For a quadrilateral grid, the numu numv arguments will specify the grid

dimensions. For a square grid, these numbers will be equal to one another.

Example Pages: 76

See Also: ellipsoid Data Command, boxes Data Command

111

object [alias [command]]

The object command provides a reference to data groups by name rather than number.

Typing object with no arguments will report the alias of the active data group. Including

the alias argument will change the active data group to the group specified by alias.

Including the command argument will execute the command on the data group alias. For

example, typing object stars on will turn on and activate the data group called “stars.”

Typing object mygroup lsize*5 will activate the data group “mygroup” and increase

the label size by 5, but will not display the group if it is off. object provides a way to activate

a data group without having to remember its group number or access its group button.

Example Pages: 32

See Also: –

object gN=alias

Issued in a data file, the object Data Command defines a group and sets its alias.

Example Pages: –

See Also: gN

off

Turn off the display of the active data group.

Example Pages: –

See Also: disable

on

Display the active data group.

Example Pages: –

See Also: enable

112 APPENDIX B. PARTIVIEW COMMANDS

only= datavar 〈 value | minval maxval | <maxval | >minval 〉

The only= command creates a subset of particles from the active data group based on the

datavar data. The selection criteria can be made in several ways. By including the value

argument, only the data whose data variable equals value will be displayed. To display a

range of data, you may specify a minimum and maximum value in minval maxval . Or,

display only those data that have are greater than or less than a given value using the

<maxval and >minval arguments.

Example Pages: 82

See Also: only+, only-, thresh, datavar, see, sel

only+ datavar 〈 value | minval maxval | <maxval | >minval 〉

Using the same selection criteria as the only= command, the only+ command allows you

to add data to the current selection set. If a selection set has been defined using the only=

command, then the only+ adds data to the selection. If no selections have been defined,

then only+ acts like only= and thresholds the data.

Example Pages: 83

See Also: only=, only-, thresh, datavar, see, sel

only- datavar 〈 value | minval maxval | <maxval | >minval 〉

Using the same selection criteria as the only= command, the only- command allows you to

remove data from the current selection set. If a selection set has been defined using the

only= command, then the only- removes data from the selection. If no selections have

been defined, then only- removes all data.

Example Pages: 83

See Also: only=, only+, thresh, datavar, see, sel

113

point[s] [on | off]

Turn on (or off) the display of points for the active data group. Simply typing point toggles

the display. The Point toggle button also toggles the display of points.

Example Pages: 21, 49

See Also: ptsize, fast

poly[gons] [on | off]

Turns on (or off) the polygons. Typing poly alone will toggle the polygons on or off. Also,

the Polygon Toggle Button will turn the polygons on and off.

Example Pages: 21, 52

See Also: polysides, polysize, polyminpixels, polylumvar, polyorivar, texture Data

Command, texture Control Command, alpha, lum, slum

polylum[var] [a | r | datavar]

Set how the polygons are sized. The default, polylum r, sets the radius of the polygon to

be equal to the polysize value. The a argument sets the radius of the polygon according to

the area of the polygon set by polysize. For example, if polysides is 4 and polysize is set

to 10, then with polylum r the radius of the polygon would be 10, while with polylum a

the radius would be
√

10 (since the area of a square is 2 ∗ r2. If datavar is specified, then

the polygons are sized according to the data variable. The default is -1, which scales the

size to those set by the luminosity commands lum, slum, polysize, and a few others.

Example Pages: 54

See Also: polygons, polysides, polysize, polyminpixels, polyorivar, texture Data

Command, texture Control Command, alpha, lum, slum

114 APPENDIX B. PARTIVIEW COMMANDS

polymin[pixels] [minpixels maxpixels]

This command sets the minimum and maximum size (in pixels) for the polygons to be

drawn. The minpixels value sets the minimum size for a polygon to be drawn, that is, no

polygons will be drawn below size minpixels. The maxpixels argument sets the maximum

size for a polygon. Without any arguments, polymin reports the current values.

Example Pages: 55

See Also: polygons, polysides, polysize, polylumvar, polyorivar, texture Data

Command, texture Control Command, alpha, lum, slum

polyorivar [num]

Reports the polygon orientation information. Orientation is specified as 6 columns of

numbers in the .speck file. The six numbers are two sets of three that describe orthogonal

vectors in the plane of the polygon. The first of these numbers is defined using a datavar

command. polyorivar is then used in the data file to tell Partiview which column (datavar

name) is the first orientation column. The num refers to the datavar number. The default

value of num is -1 which draws polygons that always face the screen.

Example Pages: 56

See Also: polygons, polysides, polysize, polyminpixels, polylumvar, texture Data

Command, texture Control Command, alpha, lum, slum

polyside[s] [numsides]

Set the number of sides of the polygons in the active data group. numsides ranges from 3

to 16. The default value is 11, which produces a round polygon. If you are placing textures

on your polygons, the optimal number of sides is 4. Without the numsides argument, the

current value is reported.

Example Pages: 22, 55

See Also: polygons, polysize, polyminpixels, polylumvar, polyorivar, texture Data

Command, texture Control Command, alpha, lum, slum

115

polysize [+, *, /][size]

Set the size of the polygons in distance units. The size argument, like the labelsize

command, is relative to the units of distance of the data. The size of the polygon is then

scaled by the lum and slum commands.

Example Pages: 22, 52, 54

See Also: polygons, polysides, polyminpixels, polylumvar, polyorivar, texture Data

Command, texture Control Command, alpha, lum, slum

psize [+, *, /][scalefactor]

A global scale factor that scales the luminosity of the points by scalefactor . A scalefactor

of 0 gives the points zero luminosity. A high scale factor allows points to be visible from

large distances. psize does not affect polygon size, only the point size.

Example Pages: 60

See Also: points, lum, lum const, slum

ptsize [minpixels] [maxpixels]

Sets the range of apparent sizes in pixels for all points in the active data group. Points have

a range of sizes that is dependent your distance from them. The size of a point will

generally grow as you approach it. However, it is possible to saturate the size by setting a

maximum slum value, for example. minpixels is the minimum size in pixels a point must be

before it is drawn. maxpixels sets the maximum size in pixels a point will reach. Most

graphics systems have an upper limit for the size of a point, which is usually around 10–20

pixels.

Example Pages: 50

See Also: fast, points

116 APPENDIX B. PARTIVIEW COMMANDS

read filename

Use this command to read a data file filename into Partiview. The read command acts as

both a Data Command as well as a Control Command. This means that you may use read

in the Command Line interactively without the add prefix, and you may use read in a data

file without the eval prefix.

Example Pages: 29

See Also: include, filepath

see [all | none | 〈 thresh | -thresh 〉 | name]

The see command allows you to toggle between various data thresholding scenarios. The

all and none show all, or none, of the particles in the active data group. If a subset of data

have been defined using the thresh or only= commands, then thresh displays these

settings. -thresh is the anti-thresh—it displays the data hidden by the current thresh, and

removes the data displayed by the current thresh, the inverse view. Using the sel

command, selection settings can be saved and used here as name.

Example Pages: 81, 83

See Also: only=, only+, only-, thresh, datavar, sel

sel name = thresh

The sel command allows you to save a threshold scenario with the name name. These

expressions can then be used with the see command. For example, if you used thresh or

only= to display a subset of data, then the command sel myselect = thresh would

save the threshold setting with the name myselect. Then, to toggle views you would type

see myselect, then see all to see all particles again.

Example Pages: 83

See Also: only=, only+, only-, thresh, datavar, see

117

showbox level

If multiple boxes are defined, a subset of boxes can be toggled on and off using the

showbox and hidebox commands. Boxes are grouped by the level specified in the boxes

command. By giving several boxes the same level number, these boxes can then be

toggled on or off while leaving other boxes unchanged. For example, if you have defined 10

boxes and five of them were defined with a -l 3 argument, then these five boxes can be

turned off using the hidebox 3 command or turned on using the showbox 3 command.

In addition, a listing of level numbers can be used, such as showbox 2 23 15 to show

boxes that have level values of 2, 15, and 23.

Example Pages: 72

See Also: boxes Data Command, boxes Control Command, boxaxes, boxcmap,

boxcment, boxlabel, boxscale, clipbox, gobox, hidebox

slum [+, *, /][scalefactor]

A luminosity scaling factor that increases the brightness of all points in a data group. slum

is a data variable-specific scale factor, meaning you could have several slum settings, one

for each data variable. For example, if you have a file with two data variable columns, one

for the brightness of the object, defined in a datavar command as lumin, and one for the

actual size called diam, then one could set the luminosity, or size, of the particles to either

of these using these commands:

lum lumin

slum 10.5

lum diam

slum 2.3

Once you have set the slum value for each of these, then you can toggle between settings

using the lum datavar command, as in lum lumin and lum diam. Your slum settings will

remain for each datavar so that you don’t have to set the scaling each time you wish to

view an alternate representation of the data.

Example Pages: 22, 60

See Also: lum, lum const, lum datavar , datavar, polysize

118 APPENDIX B. PARTIVIEW COMMANDS

snapset [-n framenumber] filestem

snapset defines a filename for writing a snapshot of the current view. This is how Partiview

exports a screen grab of the OpenGL output. The image is written into a compressed

Portable PixMap (*.ppm) file by default, but can be written into various image types (tif,

jpeg, bmp, etc.) given you have the convert(1) program installed and in your path (this

applies to UNIX and UNIX-like environments, i.e., not Windows).

The filestem argument sets the file name (minus extension). Partiview will append the

frame number (beginning at zero) and the file extension (.ppm) along with the gzip

extension (.gz). The filestem may also be expressed as a C printf()-like format string

with the frame number acting as the argument for the format specifier (see examples

below). You may also provide the filestem with a frame number using the -n framenumber

option. Whatever frame number you begin with, whether it is the default (0) or one specified

with the -n option, subsequent snapshots will take on the current frame number plus one.

Some examples of the snapset command are:

snapset -n 4 picture: Here we issue snapset with a frame number of 4 and a

filestem called picture. Once the snapshot command is executed, the resulting file

will be called: picture.004.ppm.gz. Note here that the default frame number (004)

is 3 digits in length. To have a longer or shorter frame number, we must supply a

format specifier.

snapset -n 20 picture%05d.ppm: Now we have a frame number of 20 and we tell

Partiview to create a file called picture with a frame number that is 5 digits in length

(filling in with leading zeros) with an extension of ppm without compression. The

resulting file name is: picture00020.ppm.

snapset -n 10 picture%03d.tif: Similar to the above example, except here we set

the frame number to 10 and specify a frame number of 3 digits. Then we specify a

tif extension, creating a TIFF file. The resulting file will be called picture010.tif.

once snapset is executed, you must use snapshot to export the image.

Example Pages: 47

See Also: snapshot

119

snapshot [filestem]

Capture a screen grab of the Viewing Window. The argument filestem sets the filename

just as it does in the command snapset. Typically one would set the output type and

filename using snapset, then issue the snapshot command to save the image.

Example Pages: 47

See Also: snapset

stereo [on | off | redcyan | glasses | cross | left | right] [separation]

Without any arguments, stereo reports the current stereo setting. The on and off

arguments are used to turn the stereo display on or off (you may also use the s key in the

Viewing Window). redcyan should be used with red-green or red-blue glasses. If you have

red-blue glasses, we recommend setting the particle color to purple

(color const 1 0 1) so that the image splits into red and blue. The cross argument

splits the Viewing Window into two identical views for cross-eyed stereo. The left and right

arguments display only the left and right eye’s view which may be useful for stereo

snapshots. The separation argument describes the separation of the two images. Typical

values range between 0.02 and 0.1 (or -0.02 to -0.2 if you want to swap eyes). Also see

focallen which sets the distance to a typical object of interest—left- and right-eye images of

an object at that distance will coincide on the screen. Virtual world eyes will be separated

by a distance 2× focallen× separation with a convergence angle of

2× arctan(separation).

Example Pages: –

See Also: focallen

[add] x y z text [-size value] yourlabel

Typically used in a data file, a label can be added interactively via the Command Line by

prefacing it with add. Just supply the x , y , z location of the label and the text of the label in

place of the yourlabel argument. For example, to interactively place a label that reads “Star

Number One” (without the quotes) at (x , y , z) = (400, 200, 200), type

120 APPENDIX B. PARTIVIEW COMMANDS

add 400 200 200 text Star Number One

in the Command Line. Or, simply include the line 400 200 200 text Star Number

One inside a data or config file. Labels can be sized relative to one another using the -size

option, increasing or decreasing the size of the label by the factor value. For example, to

set a label to half its value, use -size 0.5 option.

Example Pages: 35, 68

See Also: add, labels, labelsize, labelminpixels, laxes, textcment, textcolor

textcment colorindex [R G B]

Define a text color R G B to the color index colorindex for the active data group. Use this in

conjunction with the textcolor command.

Example Pages: 67, 68

See Also: textcolor, labels, labelsize, labelminpixels, laxes, text

[add] textcolor colorindex

Associate the text color for a given data group or a portion of a data group with the

colorindex assigned via the textcment command. Note: this command does not appear to

work from the Command Line or from within a config file. It must appear in the .speck file

where the labels are listed. (so the [add] preface is listed here for consistency but has no

effect on the usage of textcolor.)

Example Pages: 67, 68

See Also: textcment, labels, labelsize, labelminpixels, laxes, text

texture [on | off]

Toggles the textures on and off. The Texture toggle button also turns the textures on and off.

Example Pages: 21, 58

See Also: texture Data Command

121

[add] texture [-a | -i | -A | -O | -M | -D] texnum filename

Associates a texture file filename with a texture number texnum for a particular particle or

many particles. Using the datavar command, a data variable can be defined in your

.speck file to hold the texture number for each particle. Then, using texture, the same

texture numbers are assigned to the desired files. Display options include:

-a Alpha: Image is taken as opacity data, rather than luminance data (the

GL ALPHA texture format). A single-channel image is normally used as

luminance data.

-i Intensity: Computes the intensity of each pixel and uses it to form an alpha

channel for 1 or 3 channel images.

-A Additive blending: Texture will add to, not obscure, the brightness of

textures that are behind it.

-O Over compositing: Texture will obscure features behind it according to the

alpha values at each point.

-M Modulate: Multiply the texture brightness/color values by the color

map-determined color of each particle.

-D Decal: The texture’s polygon color is determined entirely by the texture,

suppressing any color map information.

To turn textures on and off, see the texture Control Command.

Example Pages: 57

See Also: texture Control Command, texturevar, txscale, alpha, polygons,

polyminpixels, polyorivar, polysides, polysize, polylumvar, color

[add] texturevar datavar

Sets which datavar (column in a file) to be read as texture numbers. Texture numbers are

defined in the texnum argument of the texture Data Command. For example, if column 6 in

a given data file is the texture number assigned to each particle, then texturevar 2

would tell Partiview that column 6 is where the texture information is located for each

122 APPENDIX B. PARTIVIEW COMMANDS

particle (recall the first three columns of any data file are always x , y , z, and Partiview

begins counting from zero for columns thereafter).

Example Pages: 57

See Also: texture Data Command, texture Control Command, datavar

tfm [matrix]

Apply a transform to the active data group. The matrix takes the form tx ty tz Rx Ry Rz ,

where tx ty tz are the x , y , z translations and Rx Ry Rz are the rotations about the x , y , z

axes, respectively. For example, if you would like to move a data group 10 units of distance

in the y direction, then you would issue the command: tfm 0 10 0 0 0 0 (making sure

that the group you want to transform is the active data group).

Example Pages: –

See Also: –

thresh [on | off | datavar 〈minval maxval | <maxval | >minval 〉]

Threshold data in the active data group. Without an argument, thresh reports the current

threshold settings. on and off toggle the thresholding on and off. datavar minval maxval

selects data that only have datavar values between minval and maxval . Similarly, the

thresholding range can be extended from the minimum value in the datavar up to some

maxval in datavar <maxval or from some minval up to the maximum value in the datavar

using datavar >minval . minval and maxval are always included in the resulting subset of

data. Threshold settings can be saved in selection expressions that are defined using the

sel command.

Example Pages: 80

See Also: only=, only+, only-, datavar, see, sel

123

txscale [size]

Set the size of the texture which sits on the polygon. A scale factor of 0.5 sets the texture to

fit perfectly on the polygon if polysides is 4. If size is set too low, the texture will overflow

the polygon size, causing a loss of part of the image. If size is set too large, then the texture

will disappear. The default value is 0.5, which scales the texture equal to the polygon size.

Example Pages: 58

See Also: texture Data Command, texture Control Command, polysize, polysides

update

Use update to manually update the display. This is probably only useful from subprocesses

invoked via the async command.

Example Pages: –

See Also: –

version

Reports the version number for Partiview, as well as copyright information.

Example Pages: –

See Also: –

w[here]

Use the command where to generate a report on the current position and viewing angles.

The report takes the form:

camera at xw yw zw (w) xg yg zg (gN)

looking to x̂w ŷw ẑw (w) x̂g ŷg ẑg (gN)

jump xw yw zw Rx Ry Rz scale
c2w: axx axy axz 0 ayx ayy ayz 0 azx azy azz 0 xw yw zw 1
c2obj: bxx bxy bxz 0 byx byy byz 0 bzx bzy bzz 0 xg yg zg 1

124 APPENDIX B. PARTIVIEW COMMANDS

where x , y , z are the values of your current position, x̂ , ŷ , ẑ are unit vectors that describe

the forward direction vector relative to the world coordinates and the group coordinates,

Rx , Ry , Rz are the rotation angles about the x , y , and z axes, and the c2w aij and c2w aij

coefficients describe a transformation matrix from camera (your view) to world coordinates

and the object coordinates.

Example Pages: 38

See Also: jump

winsize [xsize [ysize]] [±xpos±ypos]

Sets the size of the Viewing Window. Without any arguments, winsize reports the current

size. With only one argument, the window size is set to xsize, preserving the current aspect

ratio. Specifying xsize and ysize sets the window size explicitly. The ±xpos and ±ypos

arguments set the location of the window on your screen. Positive values are measured

from the top/left corner, negative values are measured from the bottom/right corner.

Positive and negative values can be mixed; for example, winsize -0+0 will place the

window in the top/right corner. Note that specifying a ypos of +0 will place the top of the

window off screen—the top of the GUI will be placed in the top/left corner. Use this

command with detach to customize your display.

Example Pages: 45

See Also: detach

Index

active data group, 22, 23, 33

add, 28, 91

alpha, 55, 91

Alpha Slider, 22

async, 91

att Button, 25

Back Button, 24

bgcolor, 37, 92

bound, 79, 85, 92

Box Toggle Button, 21

boxaxes, 68, 93

boxcmap, 67, 93

boxcment, 67, 73, 93

boxes, 70–73

changing focus to, 73

coloring, 67, 73

hiding, 72

labeling, 71

scaling, 73

showing, 72

boxes, 71, 93

boxes Data Command, 71, 94

boxlabel, 71, 94

boxscale, 73, 95

cb, 79, 95

censize, 44, 95

Censize Slider, 22

center, 44, 95

clearobj, 96

clip, 42, 96

clipbox, 79, 96

cmap, 64, 97

cment, 66, 97

color, 98

color const, 63, 98

color datavar, 63, 98

color datavar exact, 99

color datavar exact, 64

color maps, 64

coloring particles, 62–68

Command Line, 25

comments in files, 26

config files, 35

Console Window, 25

data, see also particles

formatting, 26, 34

importing, 34

labeling, 27, 35

125

126 INDEX

data groups, 31–33

activating, 33

defining, 32

referring to, 32

datavar, 26, 34, 80, 99

detach, 46, 100

disable, 100

dv, 100

ellipsoid, 41, 74, 100

ellipsoid Data Command, 40, 74, 101

ellipsoids, 73–76

enable, 102

eval, 102

every, 78, 102

exit, 102

exporting

graphics display, 47

fade, 61, 103

fast, 51, 103

Feed Button, 24

field of view, 40–42

file types

.bat, 35

.cf, 35

.label, 35

.partiviewrc, 17, 47

.speck, 34

filepath Data Command, 29, 104

flight mode

changing, 18

Fly, 18

Orbit, 18

Rotate, 18

Translate, 18

Flight Mode Menu, 21

flight path

control

att Button, 25

Flight Path Slider, 25

Frame Controls, 25

Path Button, 25

Play Button, 25

loading, 25

playing, 25

Flight Path Slider, 25

flight scale

linear, 18

logarithmic, 18

Fly Flight Mode, 18

focallen, 104

fov, 40, 104

FOV Slider, 22

gall, 33, 105

gN, 32, 104

gN command, 105

gobox, 73, 105

Group Buttons, 23

Groups Menu, 21

hidebox, 72, 106

hist, 86, 106

Home Button, 21

INDEX 127

Importing data, 34–36

include Data Command, 107

interest, 44, 107

jump, 107

label colors, 67

label format, 27, 35

Label Toggle Button, 21

Labelmin Slider, 22

labelminpixels, 69, 108

labels, 68, 107

labelsize, 30, 69, 108

Labelsize Slider, 22

laxes, 30, 68, 108

linear flight scale, 18

logarithmic flight scale, 18

lsize, 30, 69

lum, 109

lum const, 31, 59, 109

lum datavar, 59, 109

luminosity of particles, 58–62

menu

Flight Mode, 21

Groups, 21

More, 21

Slider, 22

mesh Data Command, 76, 110

More Menu, 21

mouse controls

Group Buttons, 23

navigation, 18

navigation, 18

object, 32, 111

object Data Command, 111

off, 111

on, 111

only+, 83, 112

only-, 83, 112

only=, 82, 112

Orbit Flight Mode, 18

particle

colors, 62–68

labels, 68–69

luminosity, 58–62

statistical information, 85–88

subsets, 78

clipboxes, 79

on specific values, 82

random, 78

saving, 83

selection expressions, 83

thresholding, 80–82

Partiview

detaching the GUI, 46

entering commands, 25

flight modes, 18

help, 10

license, 9

navigation, 17

quitting, 17

requirements, 11

resizing the Viewing Window, 45

128 INDEX

running full screen, 46

starting, 16

support, 10

testing, 13–15

Path Button, 25

Play Button, 25

Point of Interest, 44

changing, 19, 44

size of (censize), 44

Point Toggle Button, 21, 49

points, 49, 113

Polygon Toggle Button, 21

polygons, 52, 113

polylumvar, 54, 113

polyminpixels, 55, 114

polyorivar, 56, 114

polysides, 55, 114

Polysides Slider, 22

polysize, 52, 115

Polysize Slider, 22

psize, 60, 115

ptsize, 50, 115

read, 30, 116

Reference Time Display, 24

Rotate Flight Mode, 18

see, 81, 116

sel, 83, 116

selecting data points, 19

showbox, 72, 117

slider

Alpha, 22

Censize, 22

Flight Path, 25

FOV, 22

Labelmin, 22

Labelsize, 22

Polysides, 22

Polysize, 22

range

linear, 23

logarithmic, 23

Slum, 22

Speed, 24

Slider Menu, 22

Slider Scale Button, 22

slum, 60, 117

Slum Slider, 22

snapset, 47, 118

snapshot, 47, 119

Speed Slider, 24

Speed Toggle Button, 24

start files, 35

stereo, 119

text Data Command, 27, 35, 68, 119

textcment, 67, 68, 120

textcolor Data Command, 67, 68, 120

texture, 58, 120

texture Data Command, 57, 121

Texture Toggle Button, 21

textures, 57

texturevar Data Command, 27, 35, 57, 121

tfm, 122

INDEX 129

thresh, 80, 122

Time Control Buttons, 24

time controls

Back Button, 24

Feed Button, 24

Reference Time Display, 24

Speed Slider, 24

Speed Toggle Button, 24

Time Control Buttons, 24

Time Dial, 24

Time Display, 24

Trip Button, 24

Time Dial, 24

Time Display, 24

toggle button

Box, 21

Label, 21

Point, 21

Polygon, 21

Speed, 24

Texture, 21

Translate Flight Mode, 18

Trip Button, 24

txscale, 58, 123

update, 123

user interface, 20–25

version, 123

Virtual Director, 6

where, 38, 123

winsize, 45, 124

	Contents
	List of Tables
	Introduction
	What is Partiview?
	About this Guide
	Partiview License
	Help and Support
	Acknowledgments

	Installing and Testing Partiview
	Program Requirements
	Installing Partiview
	Testing Partiview

	Using Partiview
	Starting and Quitting Partiview
	Flight Controls
	Partiview's User Interface
	Data Formats
	Data Groups
	Importing Data

	Changing Global Properties
	Background Color
	Changing Your Position
	Field of View
	Clipping Planes
	Point of Interest
	Resizing the Viewing Window
	Exporting the Display

	Changing Group Properties
	Drawing Points
	Placing Polygons on Points
	Drawing Textures on Polygons
	Setting the Luminosity of Particles
	Coloring Particles and Objects
	Label Properties

	Drawing Objects
	Boxes
	Spheres and Ellipsoids
	Meshes

	Creating Data Subsets
	Displaying a Random Subset
	Clip Boxes
	Thresholding Data
	Selecting Data with Specific Values
	Selection Expressions

	Statistical Reports
	The Spatial Extent of the Data
	Generating a Histogram of the Data

	Keyboard Controls
	Partiview Commands
	Index

