The Digital Universe Guide

Brian Abbott
Hayden Planetarium
American Museum of Natural History
New York, NY USA

http://haydenplanetarium.org/universe/
du@haydenplanetarium.org

August 10, 2018
Copyright © 2000-2018 American Museum of Natural History.

Hayden Planetarium
American Museum of Natural History
Central Park West at 79th Street
New York, NY 10024, USA

We encourage all parts of this manual be reproduced or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise. This manual is subject to change without notice. Please see our website for the latest version of this manual.

The Digital Universe Guide was typeset using LaTeX.

All trademarks and copyrights referred to are the property of their respective owners. See the section “Digital Universe License” for the terms and conditions of the use and distribution of the AMNH Digital Universe.
Contents

Contents 3

List of Tables 4

1 Overview 5
 1.1 What is the Digital Universe? 5
 1.2 Getting Help 6
 1.3 Digital Universe License 6
 1.4 About This Book 7
 1.5 Acknowledgments 8

2 The Milky Way Atlas 9
 2.1 Milky Way Atlas Overview 10
 2.2 Milky Way Atlas Tutorial 12
 2.3 Milky Way Data Groups 46

3 The Extragalactic Atlas 115
 3.1 Extragalactic Atlas Overview 116
 3.2 Extragalactic Atlas Tutorial 123
 3.3 Extragalactic Data Groups 139

A Light-Travel Time and Distance 175

B Parallax and Distance 177

C Redshift and Distance 180

D Electromagnetic Spectrum 183
CONTENTS

E Constants and Units 185

Index 188
List of Tables

2.1 Milky Way Data Groups ... 10
2.2 Stars Selected for Error Analysis .. 52
3.1 Extragalactic Atlas Data Groups ... 116
A.1 Light-Travel Time and Distance .. 175
A.2 Light-Travel-Time Distances to Selected Objects 176
D.1 Regions of the Electromagnetic Spectrum 183
E.1 Common Astronomical Units ... 185
E.2 Astronomical Constants ... 186
E.3 Metric Prefixes ... 187
1

Overview

1.1 What is the Digital Universe?

The Digital Universe, developed by the American Museum of Natural History, incorporates data from dozens of organizations worldwide to create the most complete and accurate three dimensional atlas of the cosmos, from the local solar neighborhood out to the edge of the observable universe.

In preparation for the reopening of the Hayden Planetarium in 2000, the American Museum of Natural History embarked on the creation of a 3-D astronomical atlas to provide a framework for teaching about the discoveries of modern astrophysics. While the Rose Center for Earth and Space was constructed outside the Museum, a digital model of the universe was constructed inside. The atlas grew out of a convergence of two great streams of technical achievement: celestial mapmaking, which incorporates centuries of observation and scientific breakthroughs, combined with hardware and software engineering, which enables sophisticated data visualization. As new data are gathered, and new tools developed, the Digital Universe will continue to expand, filling in more details of our universe as our understanding evolves.
1.2 Getting Help

The Hayden Planetarium staff welcomes your questions and comments about the Digital Universe via our email support line: du@haydenplanetarium.org. While we are not particularly staffed for this level of service, we do try to answer all email that is sent and we always like hearing from you.

1.3 Digital Universe License

This License is a legal agreement between you (the “User”) and the American Museum of Natural History (“AMNH”) regarding AMNH’s Digital Universe Atlas (the “Atlas”).

Copyright © 2000-2018 American Museum of Natural History. All rights reserved.

Downloading the Atlas AMNH offers the Atlas free of charge via our website, http://www.haydenplanetarium.org/universe/. The User is free to download and/or duplicate verbatim copies of the Atlas provided this license and copyright information accompany the Atlas.

Modifying the Atlas The user is free to modify the Atlas by either adding data or altering existing data, provided it is for personal use only. Once the user modifies the Atlas, it is no longer part of AMNH’s Atlas and cannot be used publicly alongside or within the Atlas without written permission from AMNH.

Distributing the Atlas The user is forbidden to distribute and use the Atlas for profit, as part of a software and/or production system that will subsequently be redistributed, or for public consumption (via print, electronic media, or broadcast/produced pieces) without written permission from AMNH.

Neither the names of AMNH and Hayden Planetarium nor the names of their contributors may be used to endorse or promote products derived from this Atlas without specific, prior written permission.

The Atlas is free but is offered **WITHOUT ANY WARRANTY** of any kind. We provide the Atlas “as is” and take no responsibility for any damage resulting from the use of this Atlas. The entire risk as to the quality and performance of this product is with the user.
1.4 About This Book

This book is designed for the reader who wants to be an expert on the ways of the Digital Universe with Partiview. Inside these pages, in gross detail, are the specifics of each data set, how it may be used to tell stories about the Universe, and how to manipulate these data to illustrate scientific concepts.

The guide was designed to be read electronically rather than on paper. A paper version will not take advantage of richly distributed, documentwide links. Also, it is impossible to search a paper document other than by eye, and this process leaves a lot to be desired. If you're not convinced, think of the trees.
1.5 Acknowledgments

The Digital Universe Atlas and this accompanying guide are supported by the National Aeronautics and Space Administration (NASA).

Eric Gawiser helped tremendously with the Extragalactic Atlas chapter, providing a basis upon which the chapter is now organized. He also contributed passages and fact-checked portions of the Guide.

Ryan Wyatt wrote the section “The Orion Nebula Model” and, along with Carter Emmart, provided invaluable assistance editing this guide.

Partiview was created by Stuart Levy at the National Center for Supercomputing Applications (NCSA). Please see the Partiview website for more information.
The Milky Way Atlas

The Milky Way, our home galaxy, is a large concentration of gas, dust, and a few hundred billion stars. Our star, the Sun, is one among them. The Milky Way is called a spiral galaxy for its spiral arms, where much of the star-forming gas is concentrated.

After an overview of the data groups, we will lead you through the Milky Way Atlas in a series of self-guided tutorials, then provide a reference for each data group.
2.1 Milky Way Atlas Overview

The Milky Way Atlas represents, in two and three dimensions, scientific information spanning everything from the presence of infrared radiation to the locations of exoplanets (stars that have planetary systems).

Each of these elements is represented by a single data group in Partiview, defined and given a name by the `object` command in the `milkyway.cf` file. These names are then displayed in the Group Menu and on the Group Buttons in the Partiview user interface.

<table>
<thead>
<tr>
<th>Group Name</th>
<th>See Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars</td>
<td>46</td>
<td>The observed stars</td>
</tr>
<tr>
<td>AltLbl</td>
<td>51</td>
<td>Greek (Bayer) and Flamsteed star names</td>
</tr>
<tr>
<td>Err</td>
<td>52</td>
<td>Stellar distance uncertainty</td>
</tr>
<tr>
<td>Constel</td>
<td>54</td>
<td>Constellation connectivity lines</td>
</tr>
<tr>
<td>NearStars</td>
<td>57</td>
<td>Lépine-Shara proper motion star catalog</td>
</tr>
<tr>
<td>Dwarfs</td>
<td>59</td>
<td>L and T dwarf catalog</td>
</tr>
<tr>
<td>Expl</td>
<td>60</td>
<td>Exoplanets</td>
</tr>
<tr>
<td>Kepler</td>
<td>62</td>
<td>Kepler Exoplanetary Candidates</td>
</tr>
<tr>
<td>OC</td>
<td>64</td>
<td>Open star clusters</td>
</tr>
<tr>
<td>OBassoc</td>
<td>66</td>
<td>OB associations</td>
</tr>
<tr>
<td>GC</td>
<td>68</td>
<td>Globular star clusters</td>
</tr>
<tr>
<td>Pul</td>
<td>71</td>
<td>Pulsars</td>
</tr>
<tr>
<td>PN</td>
<td>75</td>
<td>Planetary nebulae</td>
</tr>
<tr>
<td>SNR</td>
<td>77</td>
<td>Supernova remnants</td>
</tr>
<tr>
<td>H2</td>
<td>73</td>
<td>Star-forming clouds (a.k.a. H II Regions)</td>
</tr>
<tr>
<td>OriNeb</td>
<td>79</td>
<td>Orion Nebula model</td>
</tr>
<tr>
<td>Oort</td>
<td>83</td>
<td>Oort Cloud sphere</td>
</tr>
<tr>
<td>RaDec</td>
<td>84</td>
<td>Equatorial (RA/Dec) coordinates sphere & Radio sphere</td>
</tr>
<tr>
<td>Eclip</td>
<td>86</td>
<td>Ecliptic coordinates sphere</td>
</tr>
<tr>
<td>Galac</td>
<td>87</td>
<td>Galactic coordinates sphere</td>
</tr>
</tbody>
</table>

Continued on next page.
(Table Continued)

<table>
<thead>
<tr>
<th>Group Name</th>
<th>See Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mwRadio</td>
<td>88</td>
<td>Radio continuum all-sky survey</td>
</tr>
<tr>
<td>mwh</td>
<td>89</td>
<td>Atomic hydrogen all-sky survey</td>
</tr>
<tr>
<td>mwCO</td>
<td>90</td>
<td>Carbon monoxide all-sky survey</td>
</tr>
<tr>
<td>mwFIR</td>
<td>91</td>
<td>The far-infrared all-sky survey</td>
</tr>
<tr>
<td>mwIRASc</td>
<td>92</td>
<td>The IRAS composite all-sky survey</td>
</tr>
<tr>
<td>mwWISE</td>
<td>93</td>
<td>The WISE all-sky survey</td>
</tr>
<tr>
<td>mw2MASS</td>
<td>94</td>
<td>The 2MASS all-sky survey</td>
</tr>
<tr>
<td>mwVis</td>
<td>95</td>
<td>Visible all-sky survey</td>
</tr>
<tr>
<td>mwHalpha</td>
<td>97</td>
<td>The hydrogen-alpha all-sky survey</td>
</tr>
<tr>
<td>mwNUV</td>
<td>99</td>
<td>Ultraviolet survey</td>
</tr>
<tr>
<td>mwXray</td>
<td>100</td>
<td>X-ray all-sky survey</td>
</tr>
<tr>
<td>mwGamma</td>
<td>101</td>
<td>Gamma-ray all-sky survey</td>
</tr>
<tr>
<td>DSO</td>
<td>102</td>
<td>“Deep-sky” images</td>
</tr>
<tr>
<td>Galaxy</td>
<td>105</td>
<td>An exterior image for the Milky Way</td>
</tr>
<tr>
<td>Arms</td>
<td>106</td>
<td>Milky Way arm labels</td>
</tr>
<tr>
<td>StarOrbits</td>
<td>107</td>
<td>One-billion-year stellar orbits</td>
</tr>
<tr>
<td>mwBar</td>
<td>110</td>
<td>The Galactic bar</td>
</tr>
<tr>
<td>Halo</td>
<td>111</td>
<td>The Galactic halo</td>
</tr>
<tr>
<td>1ly</td>
<td>112</td>
<td>Grid centered on the Sun extending to 1 light year</td>
</tr>
<tr>
<td>10ly</td>
<td>112</td>
<td>Grid centered on the Sun extending to 10 light years</td>
</tr>
<tr>
<td>100ly</td>
<td>112</td>
<td>Grid centered on the Sun extending to 100 light years</td>
</tr>
<tr>
<td>1kly</td>
<td>112</td>
<td>Grid centered on the Sun extending to 1,000 light years</td>
</tr>
<tr>
<td>10kly</td>
<td>112</td>
<td>Grid centered on the Sun extending to 10,000 light years</td>
</tr>
<tr>
<td>GalGrid</td>
<td>114</td>
<td>100,000-light-year grid centered on the Milky Way</td>
</tr>
</tbody>
</table>
2.2 Milky Way Atlas Tutorial

The Milky Way tutorial is designed to introduce you to the Milky Way in segments that lend themselves to the scale and structure of our Galaxy. Each tutorial covers the science, the data, and Partiview’s user interface and selected commands. Complete information on each data group can be found in “Milky Way Data Groups.”

Each tutorial will tell you what to turn on before starting and what data groups and commands you will use in the tutorial. Let’s start with the view from Earth.

2.2.1 The View from Earth

We begin with what may be familiar: the night sky. Each tutorial in this section focuses on how to view the Atlas from one place, Earth. In reality, the Earth-Sun distance is negligibly small in the parsec-scaled Milky Way Atlas (the Earth-Sun distance is about 93 million miles, or 0.00000485 parsecs), so the Earth and Sun are synonymous with one another when we discuss their position in the Atlas.

Of course, there is no daytime sky in the Digital Universe—Partiview is not a planetarium simulator. Partiview cannot show you when stars rise and set or where the planets are. Rather, its strength lies in giving context to the objects that make up our Galaxy, tapping into its data visualization roots.

Now, let’s begin by launching the Digital Universe’s Milky Way Atlas.

Tutorial: Learning to Fly

Goals: To learn basic functions and review navigation.

Before starting, turn on: Stars, mwVis

You will be using: no additional groups

Your Initial Location When you launch the Milky Way Atlas, the preset position has you looking toward the constellation Orion, with the nearby stars Sirius and Procyon in view. The size of their labels is proportional to their distance from you, so you can gauge the distance of objects based on their label size.
When you start the Milky Way Atlas, you very close on a unique point. In Partiview it is called the Point of Interest. The Point of Interest is the point about which rotations and orbiting take place. In the Milky Way Atlas, it is set to the Sun’s location at \((x, y, z) = (0, 0, 0)\). (You are actually positioned a small distance from the Point of Interest for reasons we’ll discuss later in this section.)

Panning Around the Sky With the left mouse button pressed, move the mouse inside the Graphics Window to pan around the sky. You will notice the stars, a few star labels, and the band of the Milky Way. The stars resemble those in the sky in luminosity and color. We place a texture, or image, on each, giving depth to the star field. If you don’t care for these textures, you can click the Polygon Toggle Button to turn off the star’s polygons (the textures are drawn on polygons). Remember, for this change to take effect, Stars must be the active group. (A group becomes active when you right-click on its Group Button or select it from the Group Menu.) Of course, once you turn the textures off, the stars will all look similar to one another, so we prefer to have the polygons on.

Moving Off the Point of Interest Let’s exercise our navigational skills. Partiview starts in the Orbit Flight Mode. You can confirm this by looking at the active flight mode printed below the Flight Mode Menu, which should read \([o]\)rbit.

You’ve seen what the left button does from this position; it moves your head without moving your position in space. If you try holding the right button down and moving the mouse down, you’ll notice your motion is slow, but speeds up as you pull away from the Sun. Because Orbit Mode is a logarithmic flight mode, you will have zero speed when sitting on the Point of Interest. A small distance away will yield a low speed, and as you fly away from the Sun, your speed increases.

If you find yourself on the Point of Interest then you can switch the flight mode to \([f]\)ly using the Flight Mode Menu. With the right button, fly backward away from the Sun. Fly is a linear flight mode, so it remains the same speed no matter where you are in the Atlas. Using the left button in Fly Mode, pan around a bit, keeping the Sun in view. Here you’re moving your head but not your position.

Using the Keyboard to Switch Flight Modes Now switch back to Orbit Flight Mode. With the left button, you will now orbit the Point of Interest, in this case the Sun. The bracketed first letter in each flight mode may be used in the Graphics Window to switch flight modes.

To test this, activate the Rotate Flight Mode by pressing \(r\) (must be lowercase) in the Graphics
Window. You should see [r]ot appear below the Flight Mode Menu. You’ll quickly notice that the left button is the same as Orbit Flight Mode, orbiting the Point of Interest. The right button twists the view about the Point of Interest, in a plane parallel to your screen.

Translate Flight Mode Finally, switch to Translate Flight Mode using the t key and, with the left button pressed, move the mouse. Here you move your position but always keep your eyes forward. The data always move parallel to your screen in the direction of mouse motion. The right button moves you forward or backward.

Now switch to Orbit Mode and press the Home Button to bring you back to the Earth’s view. You’re ready to continue to the next tutorial.

Tutorial: Constellations

Goals: To become familiar with the constellations data set; altering the transparency and color values for objects and labels.

Before starting, turn on: Stars, mwVis, Constel

You will be using: alpha, cment, and the textcment commands

Much as we might spot a cloud in the sky and imagine what it resembles, ancient astronomers looked to the stars and dreamed of the heroes and cowards, animals and monsters, or kings and queens of their lore. Given this task today, perhaps we would see star patterns in the form of Gandhi, a computer, or an airplane. The constellations adopted by astronomers include those from ancient Greek times as well as several modern constellations, mostly in the sky as seen from the Southern Hemisphere. For more information on their origin, see “Constellation Connectivity Lines.”

We represent these celestial beings as “stick figures” connecting the bright stars that form their shapes. There are three colors assigned to the constellations in the milkyway.cf file. Most constellations have a dark pink shade. The zodiacal constellations are bright red and Orion and Ursa Major are given a blue color. The data also have labels associated with them. These labels are placed at an arbitrary distance of 65 light years.

Brightening the Lines If you want to brighten or dim the constellation lines, you must use the alpha command. (The slum command that scales the luminosity works only on points.) Use the Alpha
Slider (choose \textit{alpha} from the Slider Menu) to increase or decrease the opaqueness. If $\text{alpha} = 0$, the lines are completely transparent (invisible); if $\text{alpha} = 1$, the lines are opaque. We don’t recommend using an alpha of 1, as it will produce unwanted graphics effects. Use $\text{alpha} = 0.99$ if you want really bright lines.

You may also use the Partiview Command Line to set an alpha value. For example, type alpha 0.5 to bring the lines to half transparency.

Changing Their Color If you’re unhappy with the colors we’ve chosen, you are free to change it. In Partiview, particles are assigned a color set by the \texttt{color} command; however, objects and labels are assigned color using the \texttt{cment} and \texttt{textcment} commands. Well, it’s actually more complicated than that. \texttt{cment} assigns a red-green-blue color to a reference number called a color index, and this color index is then assigned to the object.

In the Digital Universe, we try to use color indexes of 1 when possible. Occasionally, a data group has more than one object or more than one color assigned to an object (as is the case for the constellations), making it necessary to use more than one color index.

For the constellations, we use a color index of 3 for Orion and Ursa Major, a color index of 2 for the zodiacal constellations, and a color index of 1 for the remaining constellations. Partiview will report the color assigned to color index 1 when you type

\begin{verbatim}
cment 1
\end{verbatim}

and so on, replacing “1” for the remaining color indexes. Remember, the colors are expressed in red, green, blue values, which range from 0–1. A color value of 0 means there is no color present, while a value of 1 is color saturation.

For a pure red color we have $(R, G, B) = (1, 0, 0)$. White is $(R, G, B) = (1, 1, 1)$, black is $(R, G, B) = (0, 0, 0)$, and pure yellow is $(R, G, B) = (1, 1, 0)$. To make the lines a nice greenish color, type

\begin{verbatim}
cment 1 .2 .7 .2
\end{verbatim}

Changing the Label Color Similarly, the label color may be changed with the \texttt{textcment} command:

\begin{verbatim}
textcment 1 .2 .7 .2
\end{verbatim}
You may notice that the labels appear much brighter than the lines. This is because the lines have an alpha channel factored into their display. Bring the alpha up to 0.9 and the lines and labels will resemble one another. This is not the best solution, though, as the lines now dominate the view. Better to bring the alpha down so that the lines are subtle, then desaturate the label color. For example, the commands

```
alpha 0.4
textcment 1 0.05 0.4 0.05
```

will bring the color of the lines and labels into general agreement.

If you like these changes and wish to preserve them, open the `milkyway.cf` file and change the values for these commands in the constellation section.

Tutorial: Coordinates in the Sky

Goals: Familiarize yourself with the different coordinate systems; discover what these systems tell us about the Galaxy and our position in it.

Before starting, turn on: Stars, mwVis

You will be using: RaDec, Eclip, Galac, AltLbl, cment and fov commands

Coordinate systems are used primarily to locate objects in the sky. There are several Earth-based systems that astronomers use to describe the position of an object. One is based on Earth's system of longitude and latitude, while another is based on the plane of the Solar System. Yet another is based on the plane of our Galaxy.

Equatorial Coordinates Resemble Earth’s Coordinates in the Sky

With the Milky Way Atlas running and from the home position, turn on the RaDec group. These are the equatorial coordinates. This system is based on Earth's longitude and latitude; the brighter blue line is the celestial equator, the line projected on the sky from Earth's equator. Pan around and you will see the north and south celestial poles, those points directly above the north and south poles on Earth.

In the sky, the equivalent to Earth's latitude is called declination (Dec) and is measured from $+90^\circ$ at the north celestial pole to -90° at the south celestial pole. Longitude is called right ascension (RA) and is measured from 0 to 24 hours. You can find more information on this system in “Equatorial Coordinates Sphere.” The coordinates are labeled in 10-degree increments for declination and every hour for right ascension.
You will notice Polaris, the pole star, is right beside the north celestial pole, just where you probably expect it to be. Orion’s belt, three stars in a line, is just below the celestial equator.

Ecliptic Coordinates are Based on the Solar System
Turn off RaDec, then turn on ecliptic coordinates group Eclip. The ecliptic coordinates are in red and have a brighter line for the “equator.” What is the physical significance of this coordinate system, though?

The equator in this coordinate system is called the ecliptic. It is the path the Sun makes in the sky and, therefore, is the plane shared by the Sun and Earth, generally the plane of the Solar System. In this system, we measure an object in ecliptic longitude and latitude.

Because ecliptic coordinates describe the Sun’s path in the sky throughout the year, the ecliptic passes through all the zodiacal constellations. If you turn on the RaDec group once again, you can see the effect of Earth’s obliquity. The obliquity refers to the degree to which Earth is tipped on its axis of rotation. If it weren’t tipped, the ecliptic (bright red line) would coincide exactly with the celestial equator (bright blue line) and the Sun would always be directly over Earth’s equator, resulting in an Earth with no seasonal climate changes. The amount of the “tip” can be seen in the angles between these two systems. Find where the celestial equator and the ecliptic cross. The angle between them is 23.5°.

Now look toward either of the poles. The angle between the celestial pole and the ecliptic pole is also 23.5°. Also, the maximum distance between the ecliptic and the celestial equator is... you guessed it, 23.5°. This number appears many times on Earth’s coordinates too. The angle between the equator and the Tropic of Cancer or Capricorn, the angle between the North Pole and the Arctic Circle, are all 23.5°.

Let’s keep to the sky, though.

Galactic Coordinates Trace the Galactic Plane
Now turn off the ecliptic and equatorial coordinates and turn on the Galactic coordinates with the Galac button. In Galactic coordinates, objects are expressed in terms of Galactic longitude and Galactic latitude, which are measured in degrees. The Galactic equator (bright green line) coincides with the band of the Milky Way in the sky. When you look toward the equator, you are looking right into the disk of the Galaxy. Therefore, when we look to the Galactic poles, we are looking directly out of the disk of our Galaxy. These areas are windows out of the Galaxy—with little gas and dust along these lines of sight, we can see much farther into the Universe.

Now turn on the ecliptic coordinates and find where the ecliptic meets the Galactic equator. Once you find their crossing, switch to Rotate Fly Mode and rotate the view with the right mouse button such
that the Galactic equator is level (parallel to your tabletop). The angle between these two lines
demonstrates the inclination of the plane of our Solar System with respect to the Galaxy. At about 62°,
the planets revolve around the Sun steeply inclined to the Galactic disk. Of course, the planetary orbits
are so small that they are lost in the Galactic disk along with the Sun, but it is fascinating to think we are
not orbiting the Sun in the same plane that we orbit the Galaxy. One often thinks of the plane of the
Solar System as a cardinal plane, defining how we think of up and down in space, but now we have a
new horizon, the Galactic plane.

Tutorial: The Milky Way from Earth

Goals: Understand how the band of light in the sky relates to the 3-D picture of the Galaxy.

Before starting, turn on: nothing

You will be using: gall command, Stars, mwVis, alpha command, RaDec, GC

If you're coming from the previous tour, let's clear the board. In Partiview's command line, type the
command

```
gall off
```

This command tells Partiview to act on all groups with the `off` command. Of course, you can use this
command to increase the brightness of all groups (`gall slum *4`) or turn them all red
(`gall color const 1 0 0`) if you desire, but for now let's just turn them off.

The Band of the Milky Way Now turn on the Stars and the mwVis groups. The mwVis data
group is the band of light across the sky that, for thousands of years, we have called the Milky Way. That
band is the disk of our Galaxy, bright toward Sagittarius, dimmer toward Orion.

Brighten up the Galaxy by increasing its `alpha` value. You can either use the Alpha Slider (choose
`alpha` from the Slider Menu) or use the Command Line by entering `alpha 0.8`, for example. (Recall
that the alpha value ranges from 0–1.)

Now you see some details that would not normally be seen. The bright clouds and the dark dust
lanes reveal themselves when we brighten up the image. Upon scanning the entire band, you will notice
a clear distinction between the bright areas toward the center of the Galaxy and the dim regions
opposite the center.
Relate this to Earth by turning on the equatorial coordinates, RaDec. These are Earth’s coordinates projected onto the sky. The bright line is the celestial equator, and the poles (where the lines converge) are those parts of the sky directly over the poles on Earth. From mid northern latitudes, we see from about -40° to $+90^\circ$ declination throughout the course of the year. Notice the difference between the Milky Way visible in the Northern Hemisphere and that part visible at southern latitudes. The southern Milky Way is much brighter and more beautiful.

Globular Clusters Are Mostly Near Galactic Center Let’s perform the same experiment that the astronomer Harlow Shapley did 80 years ago. Born in 1885, Shapley was studying the sky at Mount Wilson Observatory outside Los Angeles when the country was involved in World War I. Wartime blackouts in the city provided astronomers an opportunity to see the sky without the lights of the city below.

Shapley had been looking at globular clusters in the sky for some time. Turn on the globular clusters, GC, scan the sky, and see if you notice anything odd about where they are located. See anything strange? Look toward Orion, then look toward the opposite side of the sky along the Milky Way. It’s easy to see that most of the clusters are found around the bright part of the Milky Way.

From this, Shapley deduced that the center of our star system must be in this direction. By estimating the distance to these clusters, he put to rest the debate about the size and structure of our Galaxy. We’ll revisit this in three dimensions later in these tutorials.

Earth lies within the disk of the Galaxy, making it difficult for astronomers to understand the structure of our star system. Not until astronomers began seeing the Milky Way in wavelengths outside the visible spectrum did the structure of the Galaxy become apparent.

Tutorial: Two-Dimensional Distributions

Goals: View various data sets from Earth’s perspective to see what they reveal about the Galaxy.

Before starting, turn on: Stars, mwVis, GC

You will be using: OC, OBassoc, Pul, PN, h2, SNR

You’ve seen the distribution of the globular clusters in “The Milky Way from Earth,” now let’s investigate other data sets for similar trends.
2.2. MILKY WAY ATLAS TUTORIAL

Open Clusters Are Found in the Band of the Milky Way With the globular clusters on (GC), turn on the open clusters with the OC button. Open clusters are less dense, younger star clusters. In the Atlas, they are represented by green points. By turning off the Stars group, you have a clear view of the two types of clusters. You can make things even clearer by turning off the clusters’ labels. Make OC the active data group and press the Label Toggle Button. Once you’ve turned off the labels for both data groups, it becomes apparent that the open clusters are concentrated in the Galactic disk, while the globulars are found mainly in one part of the sky.

This concentration of open clusters in the disk led astronomers to call them Galactic clusters. Since gaining a wider perspective on our Galaxy and the surrounding Universe, astronomers have since turned to calling them open clusters, a name that refers to the more spread-out nature of the stars within them.

Open Clusters Are Younger Than Globular Clusters This spatial distinction between open and globular clusters reveals a story of Galactic structure and evolution. Open clusters are filled with younger stars and, therefore, are found in regions of the Galaxy where star formation occurs. Globular clusters are filled with older stars that formed very soon after the Galaxy was born.

In our Galaxy, star formation occurs in the spiral arms within the disk. The gas in the disk condenses to form stars, some of which are massive enough to explode in supernovae, thereby triggering new stars to form by compressing the surrounding gas. The older stellar population is found in the spherical component of the Galaxy, often called the halo. Most of the stars in the halo are cool, dim stars that are spherically distributed around the Galactic center.

What Do Other Data Sets Tell Us About the Galaxy? Let’s turn on another data set, OBassoc, that shows the locations of bunches of stars called OB associations. These contain from tens to hundreds of stars and, as you can see, lie in the plane of the Galaxy. Again, these are filled with younger stars, as the associations last only a few tens of millions of years before drifting apart into individual stars.

Turn on the rest of the 3-D data groups: pulsars, Pul, planetary nebulae, PN, star-forming regions, h2, and supernova remnants, SNR. Aside from the star-forming regions (called H I regions), which signal stellar birth, the rest of these signify stellar death. H I regions, in a sense, are at the beginning of the stellar life cycle. These give birth to open clusters and OB associations, which eventually die to
become planetary nebulae, pulsars, or supernova remnants. Because these are connected to the stellar life cycle, you would expect them to lie in or near the Galactic plane. For the most part, they do. You may see some pulsars or planetary nebulae up toward the Galactic poles [turn on the Galactic coordinates, Galac, to see], but these are typically nearby, just above or below us in the Galactic disk.

As you scan the sky, you now see the clutter that is our Galaxy. The disk appears to be a disordered mess. This view is akin to looking at a map with too much information. One would never look at a map that contained every town and village. Cartographers must choose which towns to display and typically choose population as a filter. But they also base it on the scale of the map. In the Digital Universe, this is equivalent to changing the field of view. Center the disk of the Galaxy in the Graphics Window and use the FOV Slider to “zoom in” so that the map becomes clear. Some of the polygons may be too large, but you get the idea. By decreasing your field of view, you effectively increase your resolution, entering a kind of “telescopic” view.

You have explored the Atlas from Earth’s point of view. Now it’s time to leave this view and fly into the solar neighborhood.
2.2.2 The Solar Neighborhood

In this section of tutorials, you will leave the night sky view behind and begin to explore that part of the Galaxy near the Sun. We will look at the nearest stars, stars with planetary systems, and the extent of Earth’s radio signals. But first let’s leave the Sun behind and explore our surroundings.

Tutorial: The Nearest Stars

Goals: To understand the distance scale between the Sun, the Oort cloud, and the nearest stars.

Before starting, turn on: Stars, Constel, mwVis, 1ly

You will be using: Oort, 10ly, jump command

Let’s explore the solar neighborhood. If you’re starting a new session in the Milky Way Atlas, be sure to turn on the data groups listed above and use the `jump` command

```
jump 0.05 0.6 0.3 -60 10 170
```

to go to \((x, y, z) = (0.05, 0.6, 0.3)\) parsecs with the viewing angles \((R_x, R_y, R_z) = (-60, 10, 170)\)°.

From this position, the star labels are a bit large. Decrease their size using the Labelsize Slider and orbit the Sun using the left mouse button in Orbit Flight Mode. Set it drifting and observe the constellation lines. A few of them appear as though they’re being pulled in toward the Sun. Stars like Alpha Centauri (marked \(\alpha\) Cen), Sirius, Procyon, and, to a lesser extent, Vega.

The Oort Cloud Shows the Most Distant Parts of Our Solar System Before we discover the nearby stars, let’s look at the outermost reaches of the Solar System. When the planets were forming, the larger, outer planets likely swept the Solar System clean of smaller bodies like comets. These were ejected from the inner regions by the strong gravitational influence of the planets, relegating the comets to an area called the Oort cloud. This “cloud” is where the comets have settled, and it ranges from 20,000 AU to about 100,000 AU (recall that 1 AU = 149 million km = 93 million miles and is the average Earth-Sun distance).

Turn on the Oort cloud with the `Oort` button. It’s a wire-frame sphere, but how far does it extend? Because the highest concentration of comets lies around 50,000 AU, we place the sphere at this distance. While the Oort cloud is not a perfect sphere, we use the sphere as a representational model
that provides us with its size and scale. If you still have the 1-light-year grid (1ly) on, you will notice that 50,000 AU equals about 0.8 light years. Remember, the planets are lost in the glare of the Sun; Neptune is a little more than 4 light hours away from the Sun.

The Nearest Stars Are More Than Four Light Years Away

Pull away from the Oort cloud and turn on the 10-light-year grid, 10ly, increasing the star label size as necessary. Now the cloud is a small sphere and the nearby stars are beginning to reveal themselves. Try to approximate their distances.

In the Graphics Window, type the keys cw. This resets the camera location, transporting you to a location that is 3 units up the +z-axis looking back toward the origin. Now back straight out from this position. By resetting the camera, you can be sure that you're looking at the grid face-on from a position perpendicular to the plane. Can you see the nearest star? Orbit a bit to regain some depth.

Alpha Centauri Is the Closest Star

Proxima, a cool, dim star in the Alpha Centauri triple system, is the closest star to the Sun. Aptly named, this star system lies close to the Galactic plane too, allowing you to read off its distance from the 10-light-year grid (10ly). From here, it looks to be about 4.5 light years away (it's actually 4.37 light years from the Sun). Now see if you can maneuver yourself so that you're looking at Sirius and Procyon edge-on to the grid. Sirius will be on one side, Procyon on the other. See how far from the plane these stars are. Place your mouse on top of Sirius and either press the middle mouse button or type the p key. Partiview should report back to you one of the following:

[g1]Picked -1.7712 -1.9147 -0.4079 "TYC5949-2777-1 | HIP32349 | HD48915 | HR2491 | 9 CMa | Alpha CMa | Sirius"

or

[g1]Picked -1.7712 -1.9147 -0.4079 "TYC5949-2777-1 | HIP32349 | HD48915 | HR2491 | 9 CMa | Alpha CMa | Sirius" Ø3.43588 (of 203); BVcolor 0.009 lum 20.42 Vabsmag 1.45 Vappmag -1.44 distly 8.6 distpcPctErr 0.5 U 13 V -1.9 W -11.8 speed 17.6 sptypeindex 30 lumclassindex 5 catsource 2 texture 1

The first is a report of the label, located at \((x, y, z) = (-1.7712 - 1.9147 - 0.4079)\) parsecs. The ‘@3.43588’ is the distance (in parsecs) from which we are viewing the chosen object (your distance will
likely be different). In the second report, Partiview reports from the stellar data set, printing the location information, names, and all the parameters defined in the data file, such as the star’s luminosity, its absolute and apparent brightnesses, and other information found in the stars.speck file.

We want to know how far off the plane of the Galaxy, and hence the grids, the star is. The Milky Way Atlas is a Cartesian coordinate system expressed in x, y, and z parsecs. The x axis points toward Galactic center; the y axis is in the direction of Deneb, which is the direction of our rotation around the Galaxy; and z axis points perpendicular to the plane. So Sirius is 0.4079 parsecs from the Galactic plane, or $(0.4079 \, \text{pc}) \times (3.26 \, \text{ly/pc}) = 1.330$ light years. From above, Sirius appears to be about 9 to 10 light years away (it’s actually 8.6 light years away).

Now move on to the next tutorial, in which we discuss other planetary systems outside the Solar System.

Tutorial: Extrasolar Planetary Systems

Goals: Discuss the discovery and distribution of extrasolar planets.

Before starting, turn on: Stars, mwVis, Constel, 10ly

You will be using: Expl1, textcment command

Last we left you, your were orbiting the Sun from about 20 light years away. Now let’s explore those stars that have confirmed planetary systems, the extrasolar planets, or exoplanets (Expl group). The first exoplanet was discovered around 51 Pegasus in 1995. Since then, astronomers have been uncovering planetary systems all over the sky. For more on how these are found, please see our description of this data group in “Extrasolar Planets.”

Turn on the Expl group and pull out a bit to see them in perspective. Each of these blue rings encircles a star that is host to one or more planets. If you orbit the Sun, you will notice that they are all huddled around the Sun. This is an observational bias since, for the majority of exoplanetary systems, we see the effects of the planets only on nearby stars. For a few detection techniques like transiting and lensing, astronomers can actually see planetary systems to great distances. But these nearby systems are mostly detected by observing the wobbling of the star from its spectrum, we and do not actually see the planets themselves, though we’re beginning to image exoplanets. Now that you’ve flown from the Solar System to about 100 light years away, perhaps you have a better appreciation for the challenges involved in seeing planets from such distances.
If you see the exoplanets fading from view, feel free to “slum” them up using the Slum Slider. The rings will grow as you increase the luminosity scale factor. If you find the labels are fading from view or prefer a stronger color to the blue, you may change the label color by using the `textcment` command. Change the labels to a gray color by using the command

```
textcment 1 .3 .3 .3
```

This changes color index 1 to a red-green-blue color of 0.3.

Next we’ll see how many of these exoplanets have heard from us when we discuss the extent of Earth’s radio signals in space.

Tutorial: Earth’s Radio Sphere

Goals: Understand the relationship between light-travel time and distance in the Universe; see the extent of Earth’s radio signals in the Galaxy.

Before starting, turn on: Stars, mwVis, Expl

You will be using: RaDec, 1ly

With the stars (Stars group) and exoplanets (Expl group) on, let’s turn on a marker showing where Earth’s earliest radio transmissions have reached in space. Turn on the equatorial coordinates (RaDec). From this perspective, this group no longer acts like a coordinate system but rather doubles as Earth’s radio sphere.

The radio sphere shows the boundary of Earth’s radio signals beginning in the late 1930s and into the early 1940s, when radar, television carrier waves, and atomic testing started sending strong radio signals into space. Strong enough to pass through Earth’s ionosphere, these signals travel into interstellar space at the speed of light. A signal that left in 1940 is, as of 2018, 80 light years away. The radio sphere then contains a history of Earth’s signals and implies what you likely know: looking out into space means you’re looking back in time. At 63 light years away, we would detect the broadcast debut of *The Honeymooners*, and at 54 light years, we would hear the Beatles appearance on Ed Sullivan.

With the radio sphere and the exoplanets on, it is now possible to see how many planetary systems have heard from us. How many do you count?

Fly away from the radio sphere so that you see most of the stars. The radio sphere is the farthest extent of mankind’s presence in our Galaxy and the Universe, just 80 light years from Earth. Turn on the
1,000-light-year grid, 1kly, and you begin to see just how small an influence we’ve had in the Galaxy. In the coming tutorials, we’ll explore how much larger the Galaxy is, but let’s start with the stars.
2. THE MILKY WAY ATLAS

2.2.3 The Stellar Catalog

The stellar data set is among the richest in the Atlas, so it is worthy of our attention. In these tutorials, you will explore the different stellar populations in the Galaxy, get an estimate of the uncertainty in their distance, and discover how many more stars there are in the Galaxy whose distances are out of our reach.

Tutorial: Stellar Data Variables

Goals: Explore what data are available within the stellar data group.

Before starting, turn on: Stars, mwVis

You will be using: datavar command

Within the stellar catalog are numerous astronomical stories. Let's begin by looking at the data variables available to you in the Stars data group. Start the Milky Way Atlas and type the command

```
datavar
```

For any data group, this command reports all defined data variables. Data variables can be used to set brightness, size, and any other data attributes. Once you've issued the command, Partiview will report the following:

```
datavar 0 BVcolor -0.4.. 120.594 mean 3.23719[color] datavar 1 lum -1.17.. 155483 mean 8.89437[lum] datavar 2 Vabsmag -8.25.. 15.45 mean 0.193191 datavar 3 Vappmag -26.74.. 16.08 mean 10.5831 datavar 4 distly 0.. 11642.9 mean 1172.68 datavar 5 distpcPctErr 0.. 50 mean 1.63511 datavar 6 U -393.4.. 356.8 mean -0.313998 datavar 7 V -503.6.. 152.2 mean -0.57554 datavar 8 W -285.9.. 315.3 mean -0.226715 datavar 9 speed 0.. 590.6 mean 1.2591 datavar 10 sptypeindex 0.. 135 mean 4.793 datavar 11 lumclassindex 0.. 6 mean 0.258407 datavar 12 catsource 0.. 3 mean 2.97195 datavar 13 texture 1.. 1 mean 1
```

These variables are discussed in the data group section on the stars. Briefly, each line is a metadata column and reports its number, name, range, and mean value. For example, the first line, data variable 3 called Vappmag, is the observed brightness of the star and ranges from -26.74 to 16.08 with the mean value of 10.58. The -26 value is the Sun. We’ll discuss the system of magnitudes in the next tutorial.

In the tours that follow, we will use these data variables to explore the stars around us and even the Galaxy we live in.
Tutorial: Stellar Brightness

Goals: Examine a star's brightness as we see it from Earth.

Before starting, turn on: Stars, Constel, mwVis

You will be using: thresh and see commands

In this tutorial, we examine the brightness of the stars in our sky. This is described by what astronomers call the apparent magnitude and what we call the appmag data variable.

We can attribute the system of magnitudes to Hipparchus, the Greek observer from the second century BC. He developed the first star atlas and set the brightest stars in the sky to first magnitude and the dimmest stars to sixth magnitude. Now, with more precise scientific methods, we have quantized the magnitudes, and some stars were found to be brighter than 0 and, therefore, have negative magnitudes. For example, Sirius has an apparent magnitude of -1.4 and the Sun's is -26.

Beginning from the home position (press the Home Button) and looking toward Orion, you can see the bright stars that form the hunter as well as Sirius and Procyon, two nearby bright stars. Let's see how bright they are. Recall from our data variable report that the range in apparent magnitude, m_V, is $-26.74 < m_V < 16.08$ (which includes the Sun). If you wish to see only the bright stars in the sky, you can select them for display by using the thresh command. To see only stars in the range $-1.4 < m_V < 1$, type

```
thresh Vappmag -2 1
```

We simply use -2 instead of -1.44 to take everything from the lower limit to $m_V = +1$. Partiview reports

```
# thresh 3(Vappmag) min -2 max 1 (15 of 1062281 selected)
```

echoing the threshold, then telling you that it found 15 stars in that range. You can confirm that the sky is empty of stars except for the 15 brightest ones in the sky.

In a dark sky free of light pollution, the human eye can see to about +6.5 magnitude. Let's simulate this by showing only stars in that range. We have defined a selection expression called eye in the milkyway.cf file that you can use to display the "naked eye" stars. To use it, type the command

```
see eye
```
This will display the stars according to the Partiview command `thresh appmag -2 6.5`. Partiview reports that there are 8,876 stars in this range. The next time you look toward the sky, remember that there are only about 9,000 stars visible to the human eye in the entire sky (including the northern and southern hemisphere—unless you live near the equator, this number will be less than 9,000) as seen throughout the course of the year.

Return all the stars to view by typing

```
see all
```

We’ll explore the intrinsic brightness of the stars in the sky in the next tutorial.

Tutorial: Intrinsic Brightnesses

Goals: Explore the intrinsic brightness of the stars and contrast the intrinsically bright and faint stars.

Before starting, turn on: `Stars, mwVis`

You will be using: `lum const, lum datavar, and the see commands`

We’ve seen the brighter stars around the Sun, but are they the only stars nearby? If you’ve scanned the sky, you may have noticed the label Keid seemingly hanging out in space with a very dim star beside it. Even if you fly right up to the label, the star remains quite dim. Keid is about 16 light years from the Sun. It is a cool star with a lower luminosity, making it appear dimmer. How many more stars like this lie in our cosmic backyard but are too dim to see? Let’s find out.

Setting the Stars to the Same Luminosity Let’s leave reality for a moment and set the intrinsic brightness of each star to one constant value using this command:

```
lum const 1
```

Now all stars are on an equal footing—the brighter the star, the closer it is to us.

Sirius and Procyon look normal because they are among the closest stars, but Orion has disappeared. Most of the stars in Orion are far away. The Hyades, the star cluster in the face of Taurus the bull (turn on DC briefly to see where the cluster is), appears above Orion. Turn off the constellation lines and see if anything recognizable remains. In a universe where all stars had the same intrinsic brightness, we would have to invent new constellations.
2.2. MILKY WAY ATLAS TUTORIAL

Restore the stars to read the intrinsic luminosity from the stars.speck by using the \texttt{lum datavar} command. In stars.speck, the data variable that sets the luminosity of each star is called \texttt{lum}. Use it in place of the \texttt{datavar} argument by typing

\texttt{lum lum}

Now the familiar night sky is back. (If nothing appeared to change, be sure Stars is the active data group.) With a constant luminosity set, you may now toggle between them by typing \texttt{lum const} and \texttt{lum lum}.

\textbf{Intrinsically Bright Stars Lie in the Milky Way Band} \ We have set two selection expressions in the milkyway.cf file to cull stars by their intrinsic brightness, what astronomers call the absolute magnitude. If you would like to look at the intrinsically bright stars, type

\texttt{see bright}

The \texttt{bright} alias has been set to show only those stars with an absolute magnitude, M_V, in the range $-10 < M_V < -3$. Remember, the smaller the number, the brighter the star. We mentioned previously that the brightness of the Sun is -26. Its absolute magnitude is around $+5$—rather dim.

Notice that these intrinsically bright stars lie mostly along the band of the Milky Way. Also, some of the brighter stars in the sky are missing, including Sirius, the brightest star in the sky.

\textbf{Dim Stars Far Outnumber Bright Stars in the Galaxy} \ Now let’s look at the intrinsically dim stars using the

\texttt{see faint}

command. Here we show those stars with $0 < M_V < 10$, and you may notice that most of the stars in the sky fall into this category. There are many more intrinsically dim stars in the Galaxy than bright stars.

Return all the stars by typing

\texttt{see all}

Next let’s explore stellar distances and see how well astronomers have determined the positions of the stars.
Tutorial: Stellar Distances

Goals: Explore the nearby stars and investigate their parallax values and uncertainties.

Before starting, turn on: Stars, mwVis

You will be using: thresh command

In this tutorial, you will learn about stellar distances and parallax. Let's begin at Earth looking toward Orion (press the Home Button if necessary).

Seeing Only the Nearest Stars First tell Partiview that you want to see only those stars within 25 light years of the Sun (make sure Stars is the active data group). Do this by using the thresh command on the data variable distly:

```
thresh distly 0 25
```

This removes all stars outside this range (their labels remain, though, an oversight in Partiview).

Partiview reports that there are 97 stars in this range.

Let's see how this looks from outside the solar neighborhood. Pull away from the Sun to see all of these stars. Turn off the constellations and the visible Milky Way (mwVis). You may need to brighten the stars with the Slum Slider. You can see that Sirius, Procyon, and Altair dominate the scene.

Let's expand our scope and increase the limit to 500 light years using

```
thresh distly 0 500
```

Now you see a nice sphere of stars surrounding the Sun. Turn on the ecliptic coordinates, Eclip, which are traced on a 500-light-year-radius sphere. As you orbit, notice the midplane of the sphere (the sphere's "equator"). This is called the ecliptic, the plane that contains Earth's orbit around the Sun and generally defines the plane of the Solar System.

Tutorial: Distance Uncertainty

Goals: Be aware of the underlying uncertainties in the stellar catalog.

Before starting, turn on: Stars, mwVis

You will be using: AltLbl, center and censize commands, 10ly, Err
Let’s go home in the Milky Way Atlas (press the Home Button). (If you’re continuing from the last tutorial, reset the stars back to their normal brightness and use see all to return all stars to view.) Instead of backing away from the Sun, let’s fly forward toward the Hyades star cluster. If you don’t know where the Hyades is, turn on the open clusters, OC, for a moment to find the cluster. Once you’ve centered the cluster, fly forward by moving the mouse to the right (in Orbit Flight Mode) while pressing the right mouse button. It may take a few seconds to get going since you’re so close to the Point of Interest.

The Hyades forms a “V” shape. As you fly out, you’ll see what appeared to be the brightest star in the cluster, Aldebaran, pass by long before reaching the cluster. At 65 light years, it’s not actually in the cluster but sits between the cluster and Earth. Once you get to the cluster, stop. You’re going to change the Point of Interest to examine the cluster more effectively. With the cluster in front of you, turn on the alternate star names (AltLbl button) and find the star θ² Tauri (marked as The2 Tau). You may need to switch into Translate Flight Mode to get the proper perspective.

Changing the Point of Interest Location Once you have located the star, bring it close and place the mouse pointer over it. Next press the Shift + p keys (or use Shift + middle mouse button for a three-button mouse). This places the Point of Interest on this star. To confirm that the Point of Interest has moved, increase the size of the Point of Interest marker by using the Censize Slider. The censize command sets the size of the Point of Interest marker in the units of the data you are viewing, which in the case of the Milky Way Atlas is parsecs. You can move it with the slider or enter a value at the command line. Make it exactly 1 light year by entering

\texttt{censize 0.307}

(0.307 parsecs = 1 light year). Now you have a measuring stick and an idea of the size and scale of the star cluster. With the Point of Interest centered in your view, switch back to Orbit Flight Mode and orbit the cluster with the left mouse button. Turn off AltLbl to see the stars without their labels. Also turn on the 10-light-year grid (10ly) to give yourself a reference to the location of the Sun and Solar System.

Seeing Uncertainty While you orbit the Hyades star cluster, turn on the stellar distance uncertainty (Err). You will see a series of red points, some with blue labels, come on around the star Ain. This is Ain’s distance uncertainty. Notice how these points line up when you look toward the Sun.
Astronomers know a star’s position in the sky to great certainty. It’s the distance that is difficult to obtain because of the margin of error associated with it from the parallax measurement.

The star is placed at the parallax-derived distance of 146.6 light years. However, the star could lie anywhere along the red line from 144.9 to 148.2 light years. The red points are spaced in 1-light-year increments with the absence of a point corresponding to the published parallax distance.

Bring the Point of Interest back to the Sun. Rather than travel back to the Sun, place the mouse over it, and use the Shift + p to move the Point of Interest, it’s easier to use the Command Line. The center (or interest) command sets where the Point of Interest is. Type the command

```
center 0 0 0
```

to move the Point of Interest back to the Sun so that you return to orbiting the Sun.

Pull away from the Hyades and pass near the Pleiades star cluster, with its bright stars and longer uncertainty marker (remember to turn on the open clusters if you have trouble finding the Pleiades). We highlight the distance uncertainty of Pleione, the first star in the handle of the dipper-like asterism. You will immediately notice the uncertainty has grown a lot from that in the Hyades. This increased uncertainty, about eight times greater, affects the overall shape of the star cluster. You may recall that the Hyades was a nice spherical cluster, what you might expect a star cluster to look like. The Pleiades, on the other hand, is slightly stretched along the line of sight to the Sun, parallel to the distance uncertainty. Astronomers call this radial stretching a “finger of god.” Of course, this is an observational artifact—if the telescope were larger, the parallax (and resulting distance) would be more accurate and the cluster would look more spherical.

We have chosen a handful of stars for this data group. A list appears in “The Stellar Distance Uncertainty.” Deneb, the bright star in Cygnus, is the farthest star we sample. It is a distant star that is intrinsically very bright. But because it’s far away, the uncertainty ranges from about 1,200 to 1,550 light years.

All Data Have Uncertainties From outside the stellar data group, all these lines of uncertainty point to the Sun and should remind you that all data in the Atlas have uncertainties. From the nebulae and clusters to galaxies outside the Milky Way, each point has an uncertainty that depends on the technique used to determine its distance.
Tutorial: Sorting Stars by Color

Goals: Contrast the differences in stellar color.

Before starting, turn on: Stars
You will be using: Galaxy, see and showbox commands

The color of a star is a measure of its temperature and provides astronomers with a means of classifying stars. With color as a discriminator, two stellar populations are apparent, revealing the underlying structure of our Galaxy.

Color Is Derived from Two Brightness Measurements at Different Wavelengths In the Milky Way Atlas, we use the \((B - V)\) observed color to assign the stars their visual colors. This is the subtraction of the B and V filter brightnesses. Astronomers observe a star through many filters, then combine them to get an overall color for the star or object. In this case, the B filter is a blue light filter that sees light between about 400 nm (nanometers) and 480 nm. The V filter is roughly equivalent to the human eye and only allows light between about 500 nm and 600 nm to pass through. The difference between the measured magnitudes from each filter is the \((B - V)\) color of the star. For this color, blue stars will be high in the B filter, resulting in a lower magnitude (remember, the brighter the star, the lower its magnitude) and a negative \((B - V)\) color. Red stars will be brighter in the V filter, resulting in positive \((B - V)\) colors. Let's see this in the Atlas.

In the Milky Way Atlas, move away from the Sun so that you see most of the stars (be sure to turn the mwVis group off). If the stars are too dim, feel free to use the Slum Slider to increase their brightness. As you orbit the Sun from this great distance, you will select stars based on their \((B - V)\) color. The datavar command reports that the BVcolor variable ranges from \(-0.4\) to \(+120\), with an average value of \(+3.2\) (there appears to be a color issue with the very red stars in Gaia—we're looking into these very high values).

We've set up two selection expressions to show the color differences among stars. These selection expressions are defined in the milkyway.cf file and are called blue and red.

Blue Stars Are Young, Hot Stars First let's explore the bluer stars by typing

\texttt{see blue}
You should see a complete change in the data with a flat distribution along the Galactic disk. This might make sense, since the blue stars are hotter stars that have shorter lifetimes, burning their nuclear fuel at a high rate. These are the gas-guzzlers of stars. Because star formation takes place in the disk of the Galaxy, it makes sense that these short-lived stars would be found here.

As an aside, culling the blue stars better reveals a feature of larger Galactic structure called Gould’s Belt. It is a local grouping of stars inclined about 16° to the Galactic plane. If you type `showbox 1` in Stars and turn the boxes on, a box will appear around the bright blue stars. Press the Box Toggle Button to turn the boxes off.

Red Stars Are Cooler Stars Now let’s see the redder stars by typing

```
see red
```

The red stars are more numerous (more than 80% of the stars) and are distributed in a spherical shape. Of course, because these are observed from Earth, the distribution is centered on the Sun, but one can imagine the entire Galaxy filled with these dim stars.

Red stars are cooler stars that form throughout the Galaxy. They burn their fuel slowly and have long lifespans; some stars are as old as the Galaxy. The Sun is among these red stars, a relatively cool star with a \((B - V) = 0.65\). It has been burning its fuel for about 5 billion years and has about another 5 billion to go before entering the end stages toward a red giant and a white dwarf star.

Stellar Color Traces Galactic Structure These two contrasting views tell us about the structure of the stars in our Galaxy. The red stars are typically known as Population II stars and revolve around the center of the Galaxy in elliptical, sometimes highly inclined orbits. Bluer stars are referred to as Population I stars and lie in the Galactic disk, orbiting in orderly paths around the Galactic center. While we plot only the stars we have accurate distances for, you can imagine the disk (turn on the Milky Way image using the Galaxy button) filled with blue stars with many red stars as well. Also imagine a spherical distribution around the entire Galaxy filled with cool, red stars. This is called the Galactic Halo (Halo button), and we’ll talk about it soon.
2.2. MILKY WAY ATLAS TUTORIAL

2.2.4 Building the Galaxy

Examining the objects that make up our Galaxy enables us to understand its structure and evolution. In this section, we will look at an assortment of objects from the Atlas and build the Galaxy one data set at a time. Let's start a new session of the Milky Way Atlas and begin by investigating the OB associations.

Tutorial: OB Associations

Goals: Discover how the OB associations reveal the structure of the Galaxy.

Before starting, turn on: Stars, OBassoc, Galac

You will be using: 10ly, Galaxy

You've seen the two-dimensional distributions of the OB associations in the “Two-Dimensional Distributions” tutorial. You should still see the OB associations in view, then orbit the Sun from this vantage point.

You should see the Galactic coordinates sphere encircling the Sun. It has a radius of 1,000 light years. If you fly back toward the sphere, you will notice a few OB associations within that distance. For scale, turn on the 10,000-light-year grid 10kly, which is in the plane of the Galaxy and spans the OB associations. Not all the OB associations are represented in this group, only those with known distances—those in the neighborhood.

OB Associations Are Loose Groupings of New Stars Each of these points represents 10 to 100 stars that have dispersed to the point where they are no longer held together by their mutual gravity. O and B stars are among the hottest, most luminous stars and burn their nuclear fuel quickly. Because O stars live for only 1 million years and B stars for tens of millions of years, the lifetime of OB associations is not long compared with that of other objects in the Galaxy or the Galaxy itself.

As we have discussed in previous sections, the Galactic disk is the lifeblood of the Galaxy, where the process of stellar birth and death is ongoing. As you orbit the Sun from a distance such that you see all
the associations, you can see they lie in a relatively flat plane. Turn on the Milky Way image (Galaxy) to see how these fit into the larger picture.

OB Associations Trace Spiral Structure Because OB associations contain young stars, they form in the spiral arms of the Galaxy and are good tracers of Galactic structure. Their color coding reflects this. The Sun is located on the inner side of the Orion Arm. Sometimes this is called the Orion-Cygnus Spur, as it may be a minor connector between major spiral arms. The OB associations in this arm are colored violet. Toward the Galactic center, we look toward the constellation Sagittarius and the Sagittarius Arm of the Galaxy. The associations in this arm are blue. Opposite this, we look away from the Galactic center toward the Perseus Arm. Here the associations are orange. Turn on the Arms group to display the names of the spiral arms.

The OB associations allow you to examine the local spiral structure of the Galaxy. Now let’s look at another type of star grouping called open clusters and see what they tell us about the structure of our Galaxy.

Tutorial: Open Star Clusters

Goals: Explore the 3-D distribution of the open star clusters and contrast them with the OB associations.

Before starting, turn on: Stars, OC

You will be using: OBassoc, Galaxy, GalGrid, Galac, see command

If you’re coming directly from the last tour, turn off the OB associations and turn on the open clusters (OC). If you’re starting the Milky Way Atlas fresh, turn on the 10,000-light-year grid (10kly) and fly away from the Sun until you can see the entire grid.

The open clusters are represented by green points. From out here, we can see the entire data set, but let’s quickly fly in toward the Sun (at the center of the grid) to familiarize ourselves with these data. As you approach the Sun, stop and orbit. The Hyades should be visible, as should a few other nearby clusters. Let’s fly over to the Hyades.

Once you reach the Hyades, turn off the open cluster’s polygons so that you can see the stars in the cluster. This is the best example of an open cluster in the stellar data set; it is a spherically distributed grouping of stars. Turn on the boxes for the Stars group to emphasize the cluster.
Open Clusters Are Relatively Young Objects Now pull back out and turn on the open clusters again. Once you've reached the point where you see most of the data, stop there and orbit. Again, you will notice a concentration toward the disk of the Galaxy. From our discussion in “OB Associations,” you may deduce that these are younger objects in the Galaxy. In fact, they range in age from those that are currently forming to the oldest known cluster, Berkeley 17, which is believed to be more than 12 billion years old. However, this is an anomaly among clusters, the majority of which are young.

The Youngest Clusters Lie in Spiral Arms You might expect the younger clusters to trace out the present structure of the Galaxy and its spiral arms. Let's see if this is true. In Partiview, run the command

```
see young
```

This sets a threshold on the clusters such that all clusters more than 10 million years old will be removed from view. Now you see something that resembles arms. Turn on the OB associations to see if they correlate. Flash them on and off to see the similarities. You can see that they line up very well, confirming the placement of the local spiral arms.

You may return the full data set to view using

```
see all
```

Let's also gain a wider perspective by turning on the Milky Way image with the Galaxy button, and the Galaxy coordinate grid using the GalGrid button (turn off 10kly for clarity). Viewing the Galaxy from afar, turn off the open clusters and turn on the Galactic coordinates (Galac) to mark the location of the Sun (which is at the center of that 1,000-light-year sphere). Now you're ready to add other pieces to the Galaxy. Let's see what they reveal about the Milky Way.

Tutorial: HII Regions

Goals: Discover how star-birthing regions are distributed throughout the Galaxy.

Before starting, turn on: Stars

You will be using: h2, Galaxy, GalGrid

Let's turn to one of the youngest objects in the Atlas. We've discussed OB associations as being generally older versions of open clusters, which themselves are typically between 5 million and a few
billion years old. Now let’s examine where the open clusters are born, in stellar nurseries called H II regions (H2 button).

HII Regions Are Tightly Correlated to the Galactic Disk From a perspective outside the Galaxy, turn on the H2 group. Each of these blue points represents an area of stellar birth in the Galaxy, a giant cloud of excited hydrogen gas, glowing from the stars born within them. Like the open clusters, they are concentrated in the disk of the Galaxy, more so than the clusters.

H II regions (by the way, it’s pronounced “H-two”) are also seen to greater distances in the Galaxy. As opposed to open clusters and OB associations, which are huddled around the Sun, we see H II regions across the Galaxy. Astronomers use radio telescopes to penetrate the gas and dust, allowing them to see signature elements, such as carbon monoxide, that are used to find these clouds across the Galaxy. The only part of the Galaxy invisible to us at these wavelengths is that part opposite the Galactic center, where a high concentration of gas and dust obscures our view to those objects beyond.

When you inspect the H II regions face-on (looking down on the Galactic disk), the data form a pattern that resembles a spider. There is a concentration near the Sun, as you might expect from observed data, but beyond the Sun the H II regions form in lines, like the long legs of a spider. Turn off Galaxy to see this more clearly. Then bring back Galaxy for reference.

Astronomers Use HII Regions to Map the Spiral Arms These “legs” are in fact the spiral arms of our Galaxy. You may wonder why H II regions are seen to such great distances while we have distances to open clusters only near the Sun. The answer to this question involves the method for observing these objects. In the case of open clusters, we need to see the star and observe it with a telescope so that we can dissect its properties from their light. Because of the gas and dust in the Galaxy, those stars across the Milky Way are invisible to us.

H II regions mark the active part of the Galaxy, where the Galaxy rejuvenates itself through new star formation. But if stars are born in the Galaxy, that must mean they die too. Let’s look at where stellar death occurs in the Galaxy.

Tutorial: Pulsars and Supernova Remnants

Goals: Discuss the end of the stellar life cycle and explore where these stellar remnants are located.
Before starting, turn on: Galaxy
You will be using: SNR, Pul

Up to now, we’ve been discussing younger stars and stellar birth in the Galaxy. Now let’s turn our attention to the end of the stellar life cycle. From a point of view where you see the entire Galaxy, turn on the supernova remnants with the SNR button.

Supernova Remnants Are the Nebulous Remains of Stellar Death These orange points highlight the locations of the nebulous remains of a star after it has exploded. If a star is born with enough mass, it will burn through its nuclear fuel quickly and die spectacularly in the most energetic explosion in the Galaxy, called a supernova. The core of the star remains as a neutron star, while the outer layers burst out. From Earth, we see these outer layers as small nebulae or glowing gas clouds. One of the most famous examples is the Crab Nebula (Messier 1), a remnant from the supernova of 1054.

If you’ve read the previous tutorials in this section, you likely know why the supernova remnants are confined to the disk of the Galaxy. If ongoing star formation is a phenomenon of the disk, then this too must be where stellar death occurs. You may also wonder why a few remnants appear to be right in the Galactic center. This is due to the large uncertainties in these data. Clouds in space are among the most difficult objects to obtain good distances for. In the case of H II regions, they are extraordinarily bright and there are chemical signatures in the radio spectrum that allow their detection. For supernova remnants, astronomers must rely on other techniques.

Supernova Remnants Glow for a Very Short Time We see very few remnants sprinkled around the disk. The reason for this is that the remnant itself, the glowing cloud that surrounds the stellar core, has a very short lifetime. The glow lasts only about 50,000 years before the gas mixes into the ambient interstellar gas, cools, and fades from view. However, the core of the former star will be around for some time.

Pulsars Are Spinning Neutron Stars To see these stellar cores, turn on the pulsars (Pul). A pulsar is simply a spinning neutron star, the spinning remnants of a dying star. After the star explodes, the neutron star core is spinning very rapidly. Unlike the stars that you are familiar with, like the Sun, a neutron star has been crushed by gravity to the extent that the electrons in each atom have been forced
into the atomic nucleus. This makes the material extremely dense (a teaspoon of it would weigh about 100 million tons). In time, energy is lost by its rapid spinning, and after about a million years, the star is no longer visible.

The 1-million-year lifetime of the pulsar is much longer than the 50,000 years that the supernova remnant is visible, so you would expect to see more pulsars in the Atlas. For the same reason, you might also expect a wider scatter of pulsars above and below the plane of the Galaxy. The Atlas shows both these trends in addition to outlying pulsars far above the plane and even out of the Galaxy. We will talk about those in an upcoming tutorial.

Tutorial: Globular Clusters

Goals: View the globular star clusters and investigate how their age relates to their location in the Milky Way.

Before starting, turn on: OC

You will be using: GC, Galaxy, see command

The final data group that we will examine within the Galaxy is the **globular clusters** (group GC).

Globular Clusters Are Distributed Spherically If you orbit the Sun from outside the Galaxy, you’ll see the globular clusters are not concentrated in the disk at all but are found above and below the disk. You will also see that they are distributed about the Galactic center.

In addition to their Galactic position, globular clusters differ from open clusters in other ways. For one, they are far more dense, packing 100,000 to 1 million stars into a cluster typically 30 to 100 light years in diameter. With your new sense of scale, imagine stuffing a million stars inside Earth’s radio sphere.

Globular Cluster Stars Are Older and Cooler The stars that populate these two cluster types are different as well. Open clusters are young objects filled with young stars. Globular clusters contain stars that are older and cooler and that formed as the Galaxy was taking shape.

Turn off the open clusters to see the globulars on their own. Among all the data in the Milky Way Atlas, the globular clusters are the most complete, with only a few missing that we cannot see. These are likely on the opposite side of the Galaxy.
Metallicity Is a Measure of Age Astronomers use a quantity called metallicity to determine the age of a globular cluster. Metallicity is the fractional abundance of elements heavier than helium. In astronomy, all elements other than hydrogen and helium are “metals.” A chemist would not be happy with this definition, but this is how astronomers use the word “metal.” Clusters with a low metal abundance are older, while higher metal abundances imply younger clusters.

You can see where the older and younger clusters reside using the predefined selection expressions in the milkyway.cf file. Type

```
see oldgc
```

to see the older globulars. The distribution remains the same, but fewer clusters are present. Now look at the younger clusters with

```
see younggc
```

The young clusters are concentrated in the center of the Galaxy and are close to the Galactic plane (turn on the Galaxy group to see this plane).

Perhaps this makes sense. Younger objects tend to be found in the spiral arms within the Galactic disk. The disk is also generally more metal rich. Heavy elements are created inside stars, and supernovae release them into the Galaxy. These elements, then, are going to be found where the stellar life cycle is active.

The older clusters, on the other hand, are found out of the disk. This part of the Galaxy is called the halo (turn it on using the Halo button). The stars located here are from an era when the Galaxy was forming. After this star formation, the hot, blue stars exhausted their fuel quickly and became stellar remnants. What we see now are the cool stars that burn their fuel slowly and have very long lifetimes. These stars are metal-poor and very faint, making them difficult to see.

If you inspect all the clusters (type see all), you may notice some are quite far away. Astronomers are still discovering what lies around our Galaxy. Recently there has been speculation about some of the globular clusters possibly belonging to other galaxies, or the Milky Way capturing them from passing galaxies.

In the next section, we will discuss the larger structural elements of the Galaxy and begin to talk about what is outside our Galaxy as we wrap up our discussion of the Milky Way and head into the Extragalactic Atlas.
2.2.5 The Galactic Outskirts

These tutorials cover the Galaxy as a whole, the global properties of our star system. How large is it? What are the main structural elements of the Galaxy? And how does our Galaxy measure up to neighboring galaxies? We will answer these questions in this section as we explore the outer reaches of the Milky Way Atlas.

Tutorial: The Galactic Disk

Goals: Examine the disk component of the Milky Way, including the Galactic center, the bar, and the spiral arms.

Before starting, turn on: Galaxy

You will be using: center command, mwBar, h2

If you’re just starting the Milky Way Atlas, fly away from the Sun so that you see the entire Galaxy. Up to this point, we have discussed the data sets that make up the Galaxy. In this tutorial, we will discuss the Galaxy as an object itself.

Even today, astronomers are challenged to understand the structure of our Galaxy. Because we live within the Galaxy, we cannot see the entire star system. This often makes the structure of galaxies millions of light years away easier to understand than the structure of our own Milky Way.

From your vantage point in the Atlas, you should see the two-dimensional image we use to represent our Galaxy. Of course, we have never seen the Galaxy from this perspective. This image is the galaxy named NGC 1232, a galaxy thought to resemble the Milky Way.

The Sun Is 26,000 Light Years from the Galactic Center The Galactic disk is just less than 100,000 light years across. The Sun orbits 26,000 light years (8,000 parsecs) from the Galactic center and is about 50 light years (15 parsecs) above the disk midplane. The disk is dominated by the bright center and the outlying spiral arms.

To examine this structure, change the Point of Interest to the center of the Galaxy. Right now it is set to the Sun’s position at \((x, y, z) = (0, 0, 0)\) parsecs. The center of the Galaxy is at \((x, y, z) = (8000, 0, -15)\) parsecs, so set the Point of Interest to this location with the command

```none
center 8000 0 -15
```
To confirm the shift, increase the center size using the Censize Slider. You will see Cartesian axes appear at the Galactic center, as well as a half-axes element at the Sun. Upon confirmation, you can reduce the center size back to zero to hide it from view.

Now you can orbit the center of the Galaxy. Bring the Galactic center to the middle of your Graphics Window using the Fly Flight Mode if necessary, then switch back to Orbit Flight Mode.

The Galactic Center The center of our Galaxy is tumultuous. Within the bright region on the image are billions of stars with densities approaching 50,000 stars per cubic parsec (compare that with the density around the Sun of 0.05 stars per cubic parsec). These high densities ensure stellar interactions and even collisions. Astronomers cannot see the Galactic center in the visible spectrum because of the intervening gas and dust. However, these regions can be probed in the infrared and radio, which are less susceptible to light scattering from dust.

At the core of the Galaxy, astronomers observe a swirling ring of gas only a few parsecs across with a strong magnetic field and extended filaments. The energy required to sustain this activity must come from a massive object. But because the gas features are so small, the object driving this activity must be small too. Astronomers currently believe that a supermassive black hole exists at the Galactic center. A black hole is a region of space where gravity is so high that nothing escapes, not even light.

Our Barred Galaxy Surrounding the core is the Galactic bar. Astronomers observe noncircular orbits among the stars near the Galactic center and therefore believe our Galaxy is a barred spiral. Turn on the Galactic Bar to see the size and shape of this feature.

The bar is an ellipsoid with a size of \((a_x, a_y, a_z) = (5500, 2050, 1350)\) light years and its long axis tipped 14° with respect to the Sun. Inside this ellipsoid are billions of stars and the most active star formation in the Galaxy. This is the Galactic powerhouse, and much of the Galaxy’s activity is driven from this area.

Beyond the bar, there is the Galactic disk. The image shows spiral arms with bright H II regions (star-forming regions like the Orion Nebula) sprinkled throughout them. Depending on what kind of object you consider, the disk varies in thickness. If you consider young stars, gas, and dust in the vicinity of the Sun, the disk is only 300 parsecs (978 light years) thick. However, if you look at older disk stars in the range of 7 billion to 10 billion years, the disk is around 2 to 3 kpc (6,500 — 9,800 light years) thick. These stars formed in the disk but over time found their way out of the disk from interactions with
molecular clouds and other stars.

Turn on the spiral arm names with the Arms group. This is an image overlay with a mapping of the spiral arm names. Because this is image based, it may appear backwards if you're on the underside of the Galaxy. This is crude, but allows us to conform these labels to the arms themselves.

These are the main elements in the disk component of our Galaxy. Let's now explore the spherical components of the Galaxy in the next tutorial.

Tutorial: The Spherical Component

Goals: Explore the spherical component of the Galaxy, including the Galactic bulge and its halo.

Before starting, turn on: Galaxy

You will be using: Bulge, Halo

As you've just seen, the disk component of the Galaxy is the lifeblood of the system. This is where stars are forming and where they explode into clouds of glowing hydrogen. The spherical component is from an era when the Galaxy was forming. The stars in this part of the Galaxy are older, cooler stars that formed long ago and have long lifetimes. The spherical element of the Galaxy is called the Galactic Halo.

The Galactic Halo The Galactic halo (Halo button) is a large, roughly spherical volume that encompasses the entire Galactic disk. The halo is filled with old, faint stars and globular clusters. Recall that the globulars are densely packed clusters of 100,000 to 1 million stars. The stars in the halo and inside globular clusters are metal-poor, older stars that formed close to the era of Galaxy formation.

The shape is thought to be slightly flattened but is spherical to first order. The size of the halo remains under study. In the Milky Way Atlas, we set the radius to 41,000 pc (about 130,000 light years). If you have the globular clusters on, you'll see that most of the clusters lie within the halo but that a handful do not. Do these clusters belong to our Galaxy? Is the halo significantly larger, as some astronomers suggest? The answers to these questions will be found in two areas: in the nature of globular clusters versus small dwarf galaxies, and with our increased knowledge of our Galactic neighbors.

Explore our Galactic neighbors in the Extragalactic Atlas chapter.
2.3 Milky Way Data Groups

The Digital Universe data groups fall into distinct categories. Some are 3-D data, like the stars, while others are images or graphical representations of Galactic structure. Here, we discuss each data group in the order in which they appear in Partiview.

2.3.1 AMNH Stars

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Gaia DR1 (Gaia Collaboration 2016)</td>
</tr>
<tr>
<td></td>
<td>XHIP: An Extended Hipparcos Compilation (Anderson E., Francis C. 2012)</td>
</tr>
<tr>
<td></td>
<td>Hipparcos, the New Reduction (van Leeuwen 2007)</td>
</tr>
<tr>
<td></td>
<td>The Hipparcos and Tycho Catalogues (ESA 1997)</td>
</tr>
<tr>
<td></td>
<td>Tycho-2 Catalogue (Hog+ 2000)</td>
</tr>
<tr>
<td></td>
<td>Third Catalogue of Nearby Stars (Preliminary) (Gliese+ 1991)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td></td>
<td>David R. Rodriguez (AMNH/Hayden)</td>
</tr>
<tr>
<td></td>
<td>Ron Drimmel (University of Torino, Italy)</td>
</tr>
<tr>
<td></td>
<td>Carter Emmart (AMNH/Hayden)</td>
</tr>
<tr>
<td></td>
<td>Stuart Levy (NCSA/UIUC)</td>
</tr>
<tr>
<td></td>
<td>James Adams (AMNH/Hayden)</td>
</tr>
<tr>
<td>Version</td>
<td>5.6</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes. Common star names (see also “Alternate Star Names”)</td>
</tr>
<tr>
<td>Census</td>
<td>1,062,281 Total Stars</td>
</tr>
<tr>
<td></td>
<td>233 star name labels.</td>
</tr>
</tbody>
</table>

The stars are among the richest, most complex data group in the Atlas. Calculating the distance to stars is exceedingly difficult unless they are very close. For the AMNH star catalog, we set tolerances on the amount of acceptable uncertainty in a star’s distance, which then determines the size of our final catalog. How do we determine these distances, though?

Astronomers use something called the trigonometric parallax to determine a star’s distance. We discuss this technique in detail in “Parallax and Distance.” The short version is that for nearby stars, astronomers observe a small apparent motion visible only through telescopes. This motion results from Earth’s orbit around the Sun, and the angle formed from this motion is called the parallax angle. With a simple geometric argument, the distance to the star can be calculated as one side of a triangle.
Source Catalogs The AMNH catalog is derived from several catalogs, but the bulk of our stars come from the Gaia Catalog. Gaia is the latest European Space Agency mission to measure the parallax, brightnesses, and motions of the stars around us. Gaia will provide accurate distances to over one billion stars. This is 10,000 times the number of stars from previous catalogs. Gaia will revolutionize astrophysics, and it will provide us with the ability to see the local solar neighborhood with far more precision and resolution. Gaia was launched into orbit in 2013 and its first data release, which included about 2.5 million objects, was in 2016. The second data release arrives in 2018 and will include data for all billion-plus stars.

Hipparcos catalog. We supplement Gaia with the brighter stars from the Hipparcos catalog (Gaia has not yet released data on the brightest stars). Hipparcos was the best catalog for accurate star positions for the past twenty-five years (with revised versions in 2007 and 2012). It was launched in 1989 and collected data for four years before it was shut down in 1993, having fulfilled its mission goals. The satellite still orbits Earth at a very high altitude.

Hipparcos was named after the Greek astronomer Hipparchus, who lived in the 2nd century BC and who is credited with creating the first star catalog (and inventing trigonometry, among other things). The Hipparcos mission’s goal was to measure the trigonometric parallax of more than 100,000 stars and the photometric properties (brightness) of half a million stars. The mission was successful, measuring parallaxes for 118,218 stars and photometric data for more than 1 million stars.

Hipparcos was a “targeted mission,” meaning the target stars were determined before the satellite was launched into space. For this reason, Hipparcos did not observe all the nearby stars, as they already had good parallax measurements. Since 1838, astronomers have been measuring parallaxes from ground-based telescopes. The data from these telescopes were compiled in 1969 by Wilhelm Gliese (1915–1993) from the Astronomisches Rechen-Institut, in Heidelberg, Germany, and updated in 1991 by Gliese and Hartmut Jahriess for the third edition of the Gliese Catalog.

The Gliese Catalog contains all known stars (as of 1991) within 25 parsecs (81.5 light years) of the Sun. The catalog contains more than 3,800 stars and has many that Hipparcos did not observe. We have almost 50 such stars from Gliese in our AMNH star catalog.

Many of the stars have velocity information. Astronomers can measure the star’s proper motion, how it appears to move in the sky, and its radial velocity, its motion toward or away from Earth. Combining this information yields the 3-D motion of the star in space. For fast-moving stars, we can see a shift in the star’s position over the course of years. The fastest star in the sky is Barnard’s Star. The
2.3. MILKY WAY DATA GROUPS

fourth-closest star, Barnard’s is about 6 light years away and moves 10.3 arcseconds/year (1 degree across the sky every 350 years).

The AMNH Catalog We call our catalog the AMNH Catalog because we use a unique method for computing the stellar distance, setting it apart from distances used in other star catalogs.

Distances in the AMNH Catalog result from precomputed catalog distances, trigonometric parallax measurements, photometric parallaxes, and a weighted mean of the previous two. (Photometric parallax uses a star’s brightness and luminosity to derive its distance.) If the star has catalog distance, we use it first. If we have a trigonometric parallax percent error under some value, we compute the distance using the parallax and use that distance. For stars over the error tolerance, we compute the photometric parallax and distance, as well as a weighted mean distance from the trig parallax and the photometric parallax.

The distance determination method is traced for each star via the \texttt{dcalc} data variable. If \texttt{dcalc} = 0, the star’s distance was given in the catalog. If \texttt{dcalc} = 1, the star’s distance is derived purely from its trigonometric parallax. If \texttt{dcalc} = 2, the distance is calculated with the weighted mean value of the trigonometric and photometric parallaxes. And, when \texttt{dcalc} = 3, the distance is derived purely from the photometric information.

All the data variables for the Stars data group are listed below. As always, the first three columns of any Partiview file are \texttt{x}, \texttt{y}, and \texttt{z}. Column 4 in the file corresponds to data variable zero, column 5 is data variable 1, and so on. Partiview will generate a report of all data variables for the active data group with the command \texttt{datavar} or the shortened \texttt{dv} command.
Where mag is the magnitude, ly stands for light-year, mas is milli-arcsecond, and is a speed expressed in kilometers per second.

Labels for the stars include the star names, which are often Arabic in origin. Names like Betelgeuse, Rigel, and Aldebaran are found in the label file that accompanies this data group. We also provide Bayer (Greek) and Flamsteed labels in the alternate star labels (AltLbl) data group.

Selection Expressions Using Partiview selection expressions, we have preset some “scenes” in the milkyway.cf file. Selection expressions allow you to display data based on some selection criteria. For example, if you want to see only those stars within 100 light years, you could write a selection expression to remove all the stars outside this radius using Partiview’s thresh, only, and sel commands.

In the following table, we list our preset selection expressions. To use these expressions, type see [alias] at the Partiview Command Line (e.g., see blue).
Selection Expressions for the Stars

<table>
<thead>
<tr>
<th>Alias</th>
<th>Partiview Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>thresh BVcolor -2 0</td>
<td>Select the “bluer” stars</td>
</tr>
<tr>
<td>red</td>
<td>thresh BVcolor 0 4</td>
<td>See the “redder” stars</td>
</tr>
<tr>
<td>eye</td>
<td>thresh appmag -30 6.5</td>
<td>See stars that have an apparent magnitude brighter than 6.5 (stars visible to the naked eye)</td>
</tr>
<tr>
<td>m75</td>
<td>thresh appmag < 7.5</td>
<td>Show all stars with an apparent magnitude brighter than 7.5</td>
</tr>
<tr>
<td>speed</td>
<td>thresh speed < 0.0001</td>
<td>Display all stars with velocity data</td>
</tr>
<tr>
<td>Ostars</td>
<td>thresh sptypeindex 10 19</td>
<td>Display all the O stars</td>
</tr>
<tr>
<td>Bstars</td>
<td>thresh sptypeindex 20 29</td>
<td>Display all the B stars</td>
</tr>
<tr>
<td>Astars</td>
<td>thresh sptypeindex 30 39</td>
<td>Display all the A stars</td>
</tr>
<tr>
<td>Fstars</td>
<td>thresh sptypeindex 40 49</td>
<td>Display all the F stars</td>
</tr>
<tr>
<td>Gstars</td>
<td>thresh sptypeindex 50 59</td>
<td>Display all the G stars</td>
</tr>
<tr>
<td>Kstars</td>
<td>thresh sptypeindex 60 69</td>
<td>Display all the K stars</td>
</tr>
<tr>
<td>Mstars</td>
<td>thresh sptypeindex 70 79</td>
<td>Display all the M stars</td>
</tr>
<tr>
<td>lumclass1</td>
<td>thresh lumclassindex 1</td>
<td>Display all stars with luminosity class I</td>
</tr>
<tr>
<td>lumclass2</td>
<td>thresh lumclassindex 2</td>
<td>Display all stars with luminosity class II</td>
</tr>
<tr>
<td>lumclass3</td>
<td>thresh lumclassindex 3</td>
<td>Display all stars with luminosity class III</td>
</tr>
<tr>
<td>lumclass4</td>
<td>thresh lumclassindex 4</td>
<td>Display all stars with luminosity class IV</td>
</tr>
<tr>
<td>lumclass5</td>
<td>thresh lumclassindex 5</td>
<td>Display all stars with luminosity class V</td>
</tr>
</tbody>
</table>

Boxes
In addition to the selection statements, we have defined two sets of boxes. Yellow boxes show open star clusters that are present in the star catalog. These are each 15 light-years on a side, encompassing over 3,000 cubic light years. The aqua boxes surround OB associations within the stellar data and are 130 light years on a side.

Pressing the Box Toggle Button in Partiview will show all the boxes associated with the stellar data set. If you wish to show or hide one of the two sets, you can use the `showbox` and `hidebox` commands. The open cluster boxes (yellow) are level 1, while the OB association boxes (aqua) are level 2. Using `hidebox 2` will remove the aqua boxes, while `showbox 2` will bring them back in view.
2.3.2 Alternate Star Names

<table>
<thead>
<tr>
<th>Group Name</th>
<th>AltLbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Various</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Version</td>
<td>5.6</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes, but there are no specks. Use with Stars</td>
</tr>
<tr>
<td>Census</td>
<td>3,119 labels</td>
</tr>
</tbody>
</table>

In addition to the Arabic star names in the `stars.label` file, we include another data group with additional star labels. These are derived from the Bayer Catalog (Greek star names) and the Flamsteed Catalog. (The Bayer names take precedence).

For each constellation, the brightest star is usually designated by the Greek letter \(\alpha \) (alpha), the second-brightest is \(\beta \) (beta), and so on to \(\omega \) (omega), provided there are enough stars in the constellation. These letters were first assigned to the stars in Johann Bayer’s sky atlas of 1603. For our catalog, we use a three-letter abbreviation for the Greek letter along with the standard three-letter constellation abbreviation.

Flamsteed numbers run from 1 to \(N \) for each constellation and come from John Flamsteed's catalog of 1725. The number 1 star in a constellation has the lowest right ascension, and the numbers increase with increasing right ascension. 61 Cygni is a good example. The subject of the first trigonometric parallax measurement, 61 Cygni led to the first accurate distance determination by Friedrich Bessel in 1838.

Label Sizes

These labels are initialized in the `milkyway.cf` file such that they will appear only when you’re very close to them. The Partiview command that controls this is `labelminpixels`. This command sets a minimum pixel height before a label will be drawn. If you want to see more of these labels from your position, set `labelminpixels` to a lower value (using the Labelmin Slider, or enter the command at the Command Line). To see what these labels look like after you fly outside the stellar data, type `labelminpixels 0`, then increase their label size. Using the `labelminpixels` command along with the `labelsize` command provides a balanced amount of information without cluttering your view with labels. Such design choices lead to a good “map.”
2.3. MILKY WAY DATA GROUPS

2.3.3 The Stellar Distance Uncertainty

The position of each object in the Digital Universe has an uncertainty associated with it. To illustrate this, we demonstrate distance uncertainty with several stars of various distances and luminosities.

From Earth, we can measure a star’s two-dimensional position in the sky to great accuracy. However, the star’s distance remains elusive. Our most accurate distances come from the measurement of an angle in the sky that is imperceptible to the naked eye. This angle is called the trigonometric parallax (see “Parallax and Distance” for more information), and the uncertainties and errors in the measurement of this angle translate into uncertainties in the star’s distance.

The Stellar Distance Uncertainty

<table>
<thead>
<tr>
<th>Group Name Reference</th>
<th>Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaia DR1 (Gaia Collaboration 2016)</td>
<td></td>
</tr>
<tr>
<td>XHIP: An Extended Hipparcos Compilation</td>
<td></td>
</tr>
<tr>
<td>Hipparcos, the New Reduction (van Leeuwen, 2007)</td>
<td></td>
</tr>
<tr>
<td>The Hipparcos and Tycho Catalogues (ESA 1997)</td>
<td></td>
</tr>
</tbody>
</table>

Prepared by: Brian Abbott (AMNH/Hayden)

Version: 4.4

Labels: Yes

Census: 9 stars with uncertainty data

Table 2.2 – Stars selected for error analysis. The distance refers to their published trigonometric parallax distance. The uncertainty of this measurement is listed in terms of distances in the range column, and the uncertainty column lists the uncertainty in light-years.

<table>
<thead>
<tr>
<th>Star Name</th>
<th>Other Name</th>
<th>Distance</th>
<th>Range</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ain</td>
<td>ϵ Tauri</td>
<td>146</td>
<td>145–148</td>
<td>3</td>
</tr>
<tr>
<td>Bellatrix</td>
<td>γ Orionis</td>
<td>251</td>
<td>242–261</td>
<td>19</td>
</tr>
<tr>
<td>Spica</td>
<td>ρ Virginis</td>
<td>248</td>
<td>236–261</td>
<td>25</td>
</tr>
<tr>
<td>Betelgeuse</td>
<td>α Orionis</td>
<td>488</td>
<td>432–544</td>
<td>112</td>
</tr>
<tr>
<td>Pleione</td>
<td>28 Tauri</td>
<td>398</td>
<td>385–412</td>
<td>27</td>
</tr>
<tr>
<td>Polaris</td>
<td>α Ursae Minoris</td>
<td>432</td>
<td>426–438</td>
<td>12</td>
</tr>
<tr>
<td>Antares</td>
<td>α Scorpii</td>
<td>535</td>
<td>454–615</td>
<td>161</td>
</tr>
<tr>
<td>Rigel</td>
<td>β Orionis</td>
<td>854</td>
<td>783–925</td>
<td>142</td>
</tr>
<tr>
<td>Deneb</td>
<td>α Cygni</td>
<td>1,379</td>
<td>1,207–1,551</td>
<td>344</td>
</tr>
</tbody>
</table>
Representing Uncertainty In the Atlas, uncertainties are represented by red lines. These lines consist of a series of points that, when viewed from a distance, appear as a line. Each point is spaced 1 light year from the next. We leave a space in this line for the published parallax distance.

Labels, in light years, denote the near distance uncertainty, the published distance (from the parallax measurement), and the far distance uncertainty.

The star Ain in the Hyades star cluster in Taurus is the closest star in this sample. At 146 light years away, it has a small uncertainty of less than 2 light-years in either direction. Compare that with Pleione in the Pleiades, a star cluster that is nearby in the sky but lies about 400 light years away. Pleione has about a 14-light-year uncertainty. As you view the Atlas of stars, nebulae, and galaxies, consider that there is uncertainty associated with each of these objects and often the uncertainty for non-stellar objects is far greater.
Astronomers divide the sky into 88 regions called constellations. Today we know the stars in any given constellation do not necessarily have any physical relationship with one another. One star may be nearby, while an adjacent star may be far away. These regions were defined around preexisting figures invented by our ancient ancestors. Stars in the shape of a man, woman, beast, or the occasional inanimate object were part of an oral tradition that was passed from generation to generation.

Throughout history, and across all cultures, artists have drawn pictures over star maps to represent these figures. More often, though, we see “stick figures,” or lines connecting stars, that form the constellation figures.

History of the Constellations While most civilizations interpreted the heavens independently of one another, today the International Astronomical Union accepts 88 constellations, based mainly on Babylonian and Greek mythology and lore. More than half of the 88 constellations that became official in 1930 were known to the ancients.

Some of the Greek constellations appear in the poetry of Homer from the 9th century BC. Around the 5th century BC, the Babylonians identified the ecliptic—the path that the Sun, Moon, and planets appear to follow throughout the course of the year—and divided it into the 12 parts of the zodiac.

In the 2nd century BC, the Egyptian astronomer Ptolemy cataloged information on 1,022 stars grouped into 48 constellations. His work, the *Almagest*, remained the authority on the constellations until the 16th century, when European explorers voyaged into southern latitudes.

Once exploration of the Southern Hemisphere sky began, constellations were added quickly. In 1603, Johann Bayer published the first star atlas, which included 12 new constellations in the southern sky. Throughout the 17th century, an effort to depaganize the heavens led to the creation of the constellation Crux from bright stars that Ptolemy had considered to be part of Centaur. Additionally, Ptolemy’s grand constellation Argo Navis (Argo the Ship) was divided into the ship’s keel (Carina), its stern (Puppis), and its sails (Vela).
Changes were made throughout the 18th century and into the 19th century. In 1875, boundary lines for the constellations were drawn along lines of right ascension and declination. These boundaries and the constellations themselves were adopted by the International Astronomical Union in 1930 and provide great simplification to the night sky. Now each star, planet, comet, and nebula—all objects in the night sky—belongs in one of these 88 regions.

Constellation Connectivity Lines In the Atlas, we represent the constellations by connecting the main stars that make up the constellation “stick figures,” as seen from Earth. We generate the lines by connecting a series of \((x, y, z)\) points using Partiview’s *mesh* command. To avoid some lines appearing twice as bright, some constellations are formed with several meshes so that lines do not overlap.

While there are many philosophies on how to connect the stars—some people swear by the constellation art by author H. A. Rey (famous for the *Curious George* children’s books), others by their favorite star atlas—we have chosen configurations that we are comfortable with.

Each constellation has a label that is positioned within the constellation and placed arbitrarily at 65 light years from Earth.

Configuring the Lines and Labels The constellation lines and labels can be configured if their colors or brightnesses do not suit you. The colors are set in the *milkyway.cf* file with these commands:

```plaintext
eval cment 1 0.6 0.4 0.4
eval cment 2 0.8 0.0 0.0
eval cment 3 0.0 0.3 0.8
eval textcment 1 0.6 0.2 0.2
eval alpha 0.4
```

The *cment* command sets the red-green-blue colors of color indexes 1, 2, and 3. The *textcment* command sets the color of the labels. If you would like to change these colors, simply edit *milkyway.cf* or change them interactively at the Partiview Command Line (where you don’t need the *eval* prefix).

The brightness of the lines is set with the *alpha* command. An *alpha* of 1 sets the transparency of an object to be completely opaque (brightest), while a value of zero sets complete transparency (invisible). You can use the Alpha Slider to adjust this interactively. We don’t recommend setting the *alpha* value to 0 or 1, as the lines are invisible at 0 and completely opaque at 1, often producing unwanted graphics effects.
If you would like to see only one or several constellations, consider forming a new group and pulling out those constellation meshes you want to see into a new file. You can also set the color for a color index to \((R, G, B) = (0, 0, 0)\) (black), rendering those constellations invisible.
Critical toward our understanding of the Galaxy and the Universe are the stars that surround the Sun. If our knowledge of the local stellar population is inaccurate, then astronomer’s theories on stellar evolution are unsound. Furthermore, the locations of all stars, even the size and scale of objects in the Universe, rests upon the accuracy of the local stellar neighborhood.

The Lépine Shara Proper Motion Catalog (LSPM) contains the most complete sample of stars within 100 parsecs, with thousands of newly discovered stars. These stars have high proper motions, that is, they move across the night sky, as seen from Earth, relatively quickly. Of course, we do not see stars streaming across the sky: the fastest star in the sky, Barnard’s Star, moves only one-quarter of one degree (about half the width of the full Moon) per century. However, if we observe the same spot over a span of decades with a telescope, we will see the stars move in the sky.

All stars are in motion within the Galaxy; the Sun orbits the center of the Milky Way galaxy at approximately 500,000 miles/hour. Some stars move alongside the Sun and appear to have little motion in the sky, other stars are moving at angles perpendicular the Sun, giving them higher proper motions. Barnard’s Star will be the closest star to the Sun around the year 11,700 AD, when it will be only 3.8 light years distant.

The new stars in this catalog were discovered by comparing images of the sky from two epochs. When astronomers analyze two images from the same patch of sky taken 50 years apart, the light from each pixel should match between the two images. If there is a bright spot in one image that is not in the other, then it is scrutinized to see if it’s a fast-moving star.

Revealing the Unseen Most of the stars in this catalog are below the brightness limit of our eye, so how do we see them in the Digital Universe? We must represent them conceptually rather than photo-realistically. To see the dimmer stars, which represent the majority, we must increase their luminosity scale in the Digital Universe. By default, the stars in this data set are 10,000 times their...
normal brightness. To return these stars to their true brightness, use the command `slum /10000`, then they will be on equal footing with the normal stars.

Local Stellar Density The LSPM catalog contains over 164,000 M stars within 100 parsecs, or 326 light years. Viewing these stars 10,000 times brighter than their true luminosity reveals the sheer density of the local stellar neighborhood. For example, within a 100-light-year radius of the Sun, Gaia and Hipparcos only observed 2,607 stars, while this catalog shows over 9,800 stars within that same volume.

While this catalog presents a more accurate representation of the local stellar density, fainter objects remain and astronomers are beginning to catalog them. Gaia’s data release 2 will have over 15,000 stars in the same volume.
In astronomy, there are dwarf stars, dwarf novae, and even dwarf galaxies. As you might imagine, astronomers use the term when they refer to the smaller objects in any given class.

For decades it was believed that M stars were the coolest stars in the Universe. Some M stars, called red dwarfs, make up 70% of the stars in the Galaxy, including our nearest known neighbor, Proxima Centauri. However, a new class of objects, even cooler than M stars, was recently discovered and given the name L dwarf. The L-class dwarfs include normal stars, or red dwarfs, and brown dwarfs, which are not massive enough to ignite the nuclear processes necessary for it to shine as a star.

Also included in this catalog are objects, called T dwarfs. These are even cooler than L dwarfs and are also called brown dwarfs. They resemble large, massive, Jupiter-like objects, with methane atmospheres that are too large to be planets and too small to be stars. Brown dwarfs are extremely difficult to see, mainly because they are so dim in optical light. However, they appear brighter in infrared light.

Dimmer still, Y dwarfs are ultra-cool brown dwarfs, but very few have been discovered and they are not well understood.

Using infrared surveys, such as the Two Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), astronomers compared data from infrared images and optical images. If an object appeared bright in the infrared, but was dim or nonexistent in optical light, it was targeted for further observation to confirm its identity as a dwarf.

Representing What We Cannot See In the Digital Universe, we cannot represent these objects accurately since it is not possible to see them with the unaided eye. Instead, we represent them conceptually with oversized points that offer some chromatic resemblance. The M dwarfs are orange, the L dwarfs appear bright red, the T dwarfs are a dimmer crimson color, while the Y dwarfs appear violet. It is important to note that the brightness for these objects is grossly exaggerated relative to the stars. Also, their brightness, or size, is not proportional to their intrinsic brightness, but to distance.
2.3.7 Extrasolar Planets

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Exp1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>NASA Exoplanet Archive (CalTech/NASA)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Version</td>
<td>18.10</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Census</td>
<td>3,453 planets in 2,546 systems, 214 systems have no distance</td>
</tr>
</tbody>
</table>

Extrasolar planets, or exoplanets, are a relatively new phenomenon in astronomy. While many astronomers believed in their existence, no observational evidence was available until 1995. Since that time, we have discovered XXX systems consisting of one or more planets around a host star.

These planets were not discovered in the traditional sense of past planetary discoveries; they are so far away and so small that we cannot actually see them. Instead, for some of the systems, the host star's spectrum is analyzed, and an extremely small motion is inferred for the star. This tiny motion is due to the orbiting planet.

While we think of the Sun as being stationary, it actually moves, or wobbles, because of the planets that orbit around it. The larger the planet, the larger the wobble. This is because the center of the orbit is actually located at a point called the “center of mass” of the system. So, for example, the Sun-Jupiter system’s center of mass is more than 778,000 kilometers (483,000 miles) from the Sun’s center. This point, along the line connecting the two bodies, lies just outside the Sun’s photosphere, or “surface,” which has a radius of about 696,000 km (432,000 miles). While we do not perceive it, the Sun is orbiting this point and would be observed to wobble from a point of view outside the Solar System.

Many of the exoplanets were discovered with this observational technique. For others, a slight, but systematic, dimming of the star’s brightness infers the presence of a planet eclipsing its host star, called a planetary transit. Other techniques include pulsar timings, measuring the periodic variation in the light arrival time, and gravitational microlensing.

Planetary Hosts Most planetary systems are hosted by main-sequence stars. These systems take the names of their host star. Some of these stars have Greek names, like Upsilon Andromedae, some have Flamsteed names, like 51 Pegasus, the first system detected in 1995, and others have HD numbers from the Henry Draper star catalog. Each have the lowercase lettered name of the planet or planets in the system. The first planet is named “b,” and subsequent planets are given letters in sequence.
The remaining handful were found by microlensing and transit surveys. These are considerably farther, ranging from 500 to 20,000 light-years from Earth.

The systems are represented by a blue target around each host star. This image is not meant to represent the orbit of the planet, it is simply a marker.

The extrasolar planets have a number of data variables to offer flexibility when visualizing these data.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>distly</td>
<td>Distance to the system</td>
<td>light years</td>
</tr>
<tr>
<td>1</td>
<td>numplanets</td>
<td>Number of planets in the system</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>yeardiscovered</td>
<td>Year of first discovery in system</td>
<td>year</td>
</tr>
<tr>
<td>3</td>
<td>detectionMethod</td>
<td>The detection method index</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>texture</td>
<td>Texture number</td>
<td>—</td>
</tr>
</tbody>
</table>

The detection method index is a number that represents the method used to detect the exoplanet. The index is defined as follows:

<table>
<thead>
<tr>
<th>Index</th>
<th>Method</th>
<th>Number of Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radial velocity</td>
<td>480</td>
</tr>
<tr>
<td>2</td>
<td>Transit</td>
<td>1,971</td>
</tr>
<tr>
<td>3</td>
<td>Imaging</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Pulsar Timing</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Microlensing</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>Astrometry</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Orbital Brightness Modulation</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Pulsation Timing Variations</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Eclipse Timing Variations</td>
<td>1</td>
</tr>
</tbody>
</table>
2.3.8 Kepler Planetary Candidates

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Kepler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>NASA Exoplanet Archive (CalTech/NASA)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott, Jason No, Emily Rice (AMNH/Hayden Planetarium)</td>
</tr>
<tr>
<td>Version</td>
<td>7.7</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Census</td>
<td>4,255 stars</td>
</tr>
</tbody>
</table>

The Kepler mission is designed to stare at a small part of the sky and examine the stars within that field for the presence of planets. Of course, we discovered exoplanets prior to the Kepler mission, but these are distributed throughout the night sky and most of these are much larger than Jupiter. Kepler only sees a 105° field of view, large by astronomical standards but only 0.25% of the entire sky. It was launched in 2009 and quickly showed impressive results.

Within this ever-expanding cone fall more and more stars; however, Kepler’s detectors cannot see across the Galaxy, they are limited to objects within about 10,000 light years. Because Kepler is always focused on one part of the sky, it has a superior view of the census of planets that exist there. In addition to large, gaseous planets, Kepler is designed to discover dozens of Earth-sized planets, many of which may be in the habitable zone.

Kepler will detect planets using the transit method. When a planet crosses in front of a star, the starlight is slightly dimmed. This periodic change is the signature of an orbiting planet. The period of the planet is used to determine the planet’s orbital size and the mass of the host star. The depth of the light falloff and the size of the star are used to determine the size of the planet.

The Kepler catalog that appears in Digital Universe is the Kepler Planetary Candidates. These data are stars that Kepler has flagged as possible hosts for planets. Follow up observations are needed to confirm the existence of planets around these stars. When there are confirmed planets, you will find them in the Exoplanets data set, and marked as such in the Atlas.

Because the stellar characteristics are not integral to the story of these data, we choose to represent them monochromatically. This allows us to exaggerate their brightness, which highlights their location in the night sky, as well as the in relation to the Milky Way.

K2: Kepler’s Second Light After three years, a malfunction on the spacecraft disabled the ability to point the telescope at the designated field. Engineers had to reimage the mission to see if they
could salvage the telescope. The K2 mission was approved in 2014. K2 takes advantage of the
spaceraft's hobbled navigation and looks at other parts of the sky to hunt for planets. The telescope is
now limited to fields along the ecliptic, the plane of the solar system. You will see these as cones of
stars that lie along that plane. Known planets among these are also correlated with the exoplanets.
2.3. MILKY WAY DATA GROUPS

2.3.9 Open Star Clusters

<table>
<thead>
<tr>
<th>Group Name</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Optically visible open clusters and Candidates (Dias+ 2002-2015)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Version</td>
<td>5.7</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Census</td>
<td>2,040 clusters with labels</td>
</tr>
</tbody>
</table>

An open star cluster is a loose assemblage of stars numbering from hundreds to thousands. Unlike in an OB association, the stars in an open cluster are bound by their mutual gravitation. Astronomers know from the stellar spectra that stars in open clusters are typically young. (With the star’s spectrum, we can determine the spectral type and the luminosity class, revealing the age of the star.)

Since these are young stars, we expect to see them in the star-forming regions of our Galaxy, namely in the spiral arms. For this reason, open clusters exist, for the most part, in the plane of the Galaxy where we view the arms edge-on as the band of light in the night sky. Because of this, open clusters were originally known as Galactic clusters, but this term fell out of favor once astronomers began to understand that the Galaxy includes objects beyond the Milky Way’s disk.

Source Catalog The open cluster catalog was compiled by Wilton Dias and collaborators in Brazil and Portugal. It is a comprehensive collection of data from other catalogs coupled with the latest science and data from ground- and space-based observatories.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>diam</td>
<td>Angular diameter</td>
<td>arcminutes</td>
</tr>
<tr>
<td>1</td>
<td>logage</td>
<td>Log of the cluster’s age</td>
<td>years</td>
</tr>
<tr>
<td>2</td>
<td>distly</td>
<td>Distance to the cluster</td>
<td>light years</td>
</tr>
</tbody>
</table>

Exploring the Data As previously mentioned, open clusters are good tracers of local spiral structure. We have included a parameter in the data file to emphasize this point visually. The logage data variable is an indication of where the most recent clusters are forming. A preset selection
expression (in milkyway.cf), called young, will remove the older clusters from view, leaving those clusters younger than 20 million years. To see this, type

```
see young
```

at the Partiview Command Line (be sure OC is the active group). The remaining clusters highlight the local spiral arms nicely. From outside the Galaxy, you should see three distinct arms: the Sagittarius Arm toward Galactic center; the Orion Arm, where we live; and the Perseus Arm, toward the outer edge of the Galactic disk. To emphasize the point further, turn on the OB associations. These are in exact agreement with the open clusters, each providing a measure of the Galactic structure in our part of the Galaxy.

<table>
<thead>
<tr>
<th>Alias</th>
<th>Partiview Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>young</td>
<td>thresh logage < 7.25</td>
<td>Show clusters that are less than 20 million years old</td>
</tr>
</tbody>
</table>
2.3.10 OB Associations

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Reference</th>
<th>Prepared by</th>
<th>Version</th>
<th>Labels</th>
<th>Census</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBassoc</td>
<td>Various</td>
<td>New List of OB Associations (Melnik+)</td>
<td>2.3</td>
<td>Yes</td>
<td>61 OB Associations</td>
<td>Blue = Sagittarius Arm, Purple = Orion Arm (or Spur), Orange = Perseus Arm</td>
</tr>
</tbody>
</table>

OB associations are groups of O and B stars that have dispersed to the extent that their mutual gravity no longer holds them together. Although they may be far apart, stars in an association share a common motion in space because they were formed from the same gas cloud. This allows astronomers to easily determine OB association membership stars, although rather than structural or gravitational, they are coupled by velocity or evolutionary properties.

Associations typically have anywhere from 10 to 1,000 stars. If they are young (less than 50 million years old), they will be populated with their original O and B stars (although the O stars last only about 1 million years). For each O or B star that forms, tens of cooler M stars will form.

O and B stars are quite luminous, making OB associations visible to great distances. And since O and B stars are young stars, we know they form in the regions of the Galaxy where star formation occurs: the spiral arms. Therefore, OB associations are good tracers for spiral structure.

In the Atlas, seven-sided polygons of different colors represent the data. The colors are representative of the spiral arm structure. All the associations in this data set lie within 10,000 light years, close enough to see our neighboring arms: the Sagittarius Arm toward Galactic center (orange), the Perseus Arm opposite Galactic center (blue), and the Orion Arm (purple). The Sun and Earth are located just on the inner edge of the Orion Arm, whose bright stars are scattered throughout Orion, Cygnus, and Centaurus.

Color and Size There are two settings for the color and luminosity of the OB associations. The default has colors set to the color data variable in the ob.speck file. This produces blue (Sagittarius Arm), purple (Orion Arm), and orange (Perseus Arm) markers. The luminosity of each point is set to the association’s diameter divided by 100 parsecs (326 light years), rendering markers whose size no longer
decreases with distance but is set to a scaling of the association's physical size.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>diameter</td>
<td>Diameter divided by 100 pc</td>
<td>pc</td>
</tr>
<tr>
<td>1</td>
<td>distly</td>
<td>Distance to the OB association</td>
<td>light years</td>
</tr>
<tr>
<td>2</td>
<td>arm</td>
<td>Index based on spiral arm membership</td>
<td>—</td>
</tr>
</tbody>
</table>

If you want to use a constant sizing, type `lum const 10`. Now, as with other data groups, the larger the marker is, the closer it is to you. If you would like a constant color as well, type `color const 0.4 0.5 1.0`, and the polygons will be a blue color. To return to the settings based on the data variables arm and diameter, type `color arm` and `lum diameter` at Partview’s Command Line.

The Continuing Star Formation Story In the section “HII Regions,” we mention the Orion Nebula and the stars that are forming there. The stars that form from this cloud will eventually be part of a new OB association called Ori OB1d. It is the latest in a string of star formation events that have occurred in this region.

In the Atlas, you will see the OB associations Ori 1b, and Ori 1c in the constellation Orion. Because O stars live only about a million years before exhausting their nuclear fuel, we can place constraints on the relative time line of their formation. If the Orion Nebula (Ori 1d) currently has O stars, then Ori 1c must be about 1 million years old. We know this because it is the supernova explosions from Ori 1c that likely caused the stars in the Orion Nebula to form. Ori 1b likely followed this pattern too; its hot stars exploded and caused stars to form in Ori 1c. This is not the end of the story either. At some point an Ori 1e association and nebula will form and the cycle of birth and death in the Galaxy will continue.
2.3. MILKY WAY DATA GROUPS

2.3.11 Globular Star Clusters

<table>
<thead>
<tr>
<th>Group Name</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Properties of Galactic Globular Clusters (Francis+, Cambridge)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Version</td>
<td>2.6</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Census</td>
<td>157 clusters and labels</td>
</tr>
</tbody>
</table>

Globular star clusters are gravitationally bound groups of 100,000 to 1 million stars. They are compact, spherical “balls” of stars with very high stellar densities in their centers (stars near their center are spaced a few light months from each other). These clusters are typically 30 to 100 light years in diameter. If Earth were located inside one of these clusters, our sky would be lit by thousands of stars far brighter than the brightest stars we currently see.

Size of Our Star System Globular clusters were paramount to our understanding of the structure of our Galaxy. The story began in 1912, when Henrietta Leavitt (1868–1921), a “computer” for astronomers at the Harvard College Observatory, discovered a relationship between the period of Cepheid variable stars and their intrinsic luminosity (absolute magnitude). She found that the longer the period of variability, the more luminous the star. By observing the period of variation, Leavitt then knew the star’s absolute magnitude, or intrinsic luminosity, and with the observed apparent brightness, she was able to find the distance to these stars.

In 1918, the astronomer Harlow Shapley (1885–1972) noted that the open clusters were mainly in the plane of the Milky Way, while more than half the globular clusters were in or near the constellation Sagittarius. He deduced that these clusters must be distributed around the center of our star system, the Milky Way, and that we were viewing that point from afar. If he found the distances to these clusters, he would find the distance to the center of our Galaxy, overthrowing the long-held belief that Earth was at the center of the Universe.

Shapley observed the presence of RR Lyrae stars in these clusters. RR Lyrae stars vary in brightness over periods of less than a day, so they are easy to observe provided they are bright enough. While the intrinsic brightness of Cepheids was known, the period-luminosity relationship had not yet been established for RR Lyrae stars. Shapley was able to calibrate these variable stars to the intrinsic brightness scale and was then able to find the distances to the clusters. Jan Oort, a Dutch astronomer, confirmed this result by studying the motions of stars, showing that they are all in orbit about a
distant center.

We know today that Shapley overestimated their distances by about a factor of three, making the Galaxy about 300,000 light years in diameter. Shapley was a proponent of the Milky Way universe cosmology, believing that all that we see is part of our Galaxy and that our Galaxy is the entire Universe. In April 1920, Shapley and the astronomer H. D. Curtis met at the National Academy of Sciences to debate this cosmology in what is now called *The Great Debate*. This question would be answered within five years by Edwin Hubble (1889–1953) when, in 1923, he discovered Cepheid variables in the Andromeda Nebula. He found the distance to Andromeda and M33 to be about 300 kiloparsecs (just less than 1 million light years). An underestimation, but these results set the scale. Now the Andromeda Nebula could be considered a galaxy in its own right, and the universe was now known to be far larger than the Milky Way.

Data Variables for Globular Star Clusters

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>metallicity</td>
<td>Log of the metallicity</td>
<td>suns</td>
</tr>
<tr>
<td>1</td>
<td>distance</td>
<td>Distance to the cluster</td>
<td>light years</td>
</tr>
</tbody>
</table>

Exploring the Catalog

The globular clusters form one of the most complete data sets in the Atlas. Data for the 157 clusters in the catalog represent almost all the clusters in our Galaxy (a few on the opposite side of Galactic center may be invisible to us).

Selection Expressions for the Globular Clusters

<table>
<thead>
<tr>
<th>Alias</th>
<th>Partiview Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oldgc</td>
<td>thresh metal 2.0 -1.5</td>
<td>Show the metal-deficient, older clusters</td>
</tr>
<tr>
<td>younggc</td>
<td>thresh metal -1.0 1.0</td>
<td>Display the metal-rich, younger clusters</td>
</tr>
</tbody>
</table>

In Partiview, it’s easy to see what Shapley observed 80 years ago: most of the clusters are located in Sagittarius near the Galactic center as seen from Earth. The closer the marker, the closer the cluster. One of the nearest clusters to us is Messier 4 (M4), in the constellation Scorpius. It is about 7,200 light years away. Some of the farthest clusters lie at the edge of the Galactic halo and perhaps even beyond it (more on this in the “The Galactic Outskirts” tutorial).
2.3. MILKY WAY DATA GROUPS

Cluster Ages The age of a globular cluster is directly related to something called the *metallicity*. (In astronomy, all atomic elements heavier than helium are called metals, and the metallicity is the fractional abundance of these elements in an object.) Clusters with stellar populations that have higher metallicities are typically found near the Galactic center, while clusters that are deficient in metals are found in the Galactic halo. Use the following Partview commands to invoke preset selection expressions to see these data subsets. (Remember `see all` returns all data to view.)

```
see oldgc
see younggc
```

Having formed about 10 billion to 12 billion years ago, globular clusters are among the oldest objects in the Galaxy. They were around when the Galaxy formed, perhaps even before the disk evolved to the shape it is today. Some of the oldest stars in the entire Galaxy are found in these clusters.

The metal-rich clusters are several billion years younger than the metal-poor clusters. This may be a reflection of galaxy interaction and tidal captures from other small galaxies. In fact, astronomers are now studying whether some of the globular clusters previously thought to belong to the Milky Way are bound to other small satellite galaxies.
2.3.12 Pulsars

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Pul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>ATNF Pulsar Catalogue (Manchester+, 2005)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Version</td>
<td>5.6</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Census</td>
<td>2,498 pulsars and labels</td>
</tr>
</tbody>
</table>

Upon death, stars leave behind one of three possible remnants: a **white dwarf star**, a **neutron star**, or a **black hole**. Stars that are 1.4 to about 3 solar masses will become neutron stars in a violent explosion called a **supernova**. During a supernova, the core of the star collapses under such high pressure that the electrons, which normally remain outside the atomic nucleus, are forced to combine with the protons in the nucleus. Atomic nuclei break apart, producing what is called a degenerate state of matter. The collapse is halted when the material cannot be packed any tighter. At this point, the star has a radius of about 10 \times 15 kilometers. The density of this material is so high that on Earth a teaspoonful would weigh about 100 million tons.

Just as ice skaters spin faster as they pull their arms in, dying stars rotate faster as they collapse. If the Sun were to suddenly collapse to a radius of 10 km, its rotation period would increase from its current 25 days to 1,000 times per second. Similarly, after a supernova, the neutron star is spinning fast from the rapid collapse, but it slows over time as it converts rotational energy into radiation.

Astronomers now know that pulsars are not pulsing but are spinning neutron stars whose beams of radiation point toward Earth just as a lighthouse sweeps the horizon. Pulsars have strong magnetic fields that funnel beams of light from its magnetic poles. When these beams point to Earth, we see a strong radio signal.

Observing Pulsars The first pulsar was discovered in November 1967 by Jocelyn Bell, who was then a graduate student at the University of Cambridge. Bell and Anthony Hewish investigated further and found the repeating signal had a period of 1.3373 seconds and originated from the same spot in the sky, night after night (Hewish won the 1974 Nobel Prize in physics for this discovery). The regularity of the signal led them to consider calling these objects LGMs—Little Green Men—implying these regular signals must come from intelligent beings. However, more were soon found in other parts of the sky flashing at different periods and the LGM name was dropped in favor of “pulsar.”

Pulsars are observed primarily in the radio spectrum, although some are seen in the visible, X-rays,
and gamma rays. (The Crab Nebula Pulsar, the Vela Pulsar, a pulsar in the Large Magellanic Cloud, and the pulsar PSR 1939+2134 are all seen in the visible spectrum.) Pulsar signals are detected with radio telescopes including those at Green Bank, West Virginia (US); Arecibo, Puerto Rico; Jodrell Bank in the UK; and the Parkes Observatory and the Molonglo Observatory in Australia. The observing frequencies range from 400 MHz to 1520 MHz. The periods of most pulsars are between 0.03 and 0.3 seconds. This corresponds to a flashing between 3 and 30 times each second, a rate our eye cannot detect.

The basis for this catalog was compiled by Joe Taylor (Princeton), Richard Manchester (Australia Telescope National Facility), and Andrew Lyne (University of Manchester) and published in 1993. The Australia Telescope National Facility (ATNF) has taken this catalog and added many more pulsars which were mainly discovered by the ATNF. For this reason, you will notice there are many more pulsars in the southern sky. The labels take the form of right ascension in hours and arcminutes and declination in degrees and minutes. For example, PSR0334+2356 is a pulsar that lies at 3 hours, 34 arcminutes right ascension and +23°, 56 minutes declination.

Pulsars and Supernova Remnants Many pulsars are found in the SNR group. Since supernova remnants have short lifetimes, we can assume that the pulsars seen in them are quite young. Once the supernova remnant disappears, the pulsar’s rotation period continues to slow, and after about 1 million years the pulsar is no longer visible. Therefore, all the pulsars we see today must be the remnants of stars that have died over the previous 100,000 to 1 million years.

Pulsars in Globular Clusters Pulsars result from the supernova explosions of stars that live only a few tens of millions of years after their formation. Why, then, do astronomers see so many pulsars in globular clusters that are more than 10 billion years old? The answer seems to be that these pulsars are drawing in material from a nearby companion star. This matter causes the star to spin faster, re-energizing the system. These are called millisecond pulsars for their periods, which can be as short as 0.002 seconds (2 milliseconds). More than 30 of these have been found and are easily seen to line up with the globular clusters in the Atlas. (Note that the distances can differ between the pulsar data and the globular cluster data, since they use different distance determination techniques.) Some examples include the globular clusters 47 Tuc, M5, and M13.
HII regions are the surrounding clouds of hydrogen that glow from the stars born within them. It takes ultraviolet light to ionize hydrogen, light that can come only from hot, luminous stars (like O stars). When the star “turns on,” the electrons in the surrounding hydrogen are stripped away. The hotter the star, the farther the ionization radius, creating what astronomers call a Strömgren sphere. An O5 star can excite hydrogen up to 65 light years from the star.

The result is a glowing nebula that is seen from great distances. One local celebrity among HII regions is the Orion Nebula (M42). About 1,500 light years away, the wispy cloud resembles a hazy star and can be seen with the naked eye in Orion’s sword. At its center are four bright stars that form an asterism called the Trapezium. These stars are surrounded by the cloud, which is about 25 light years across. The largest of these stars, θ^1 Orionis C, is 40 solar masses and has a surface temperature around 30,000 Kelvin (compared that with the Sun’s 6,000 K). It is also about 300,000 times more luminous than the Sun. The cloud, however, is heated only to about 70 K and has a very low density of 600 atoms per cubic centimeter. Compare this with air at sea level that has 10^{19} atoms per cubic centimeter.
Tracing Galactic Structure From Earth’s perspective, you’ll notice that the H\textsubscript{II} regions all lie close to the Galactic plane. This is not an accident of nature. These star-forming regions lie in the plane of the Galaxy because that is where star formation occurs in spiral galaxies such as our Milky Way.

Radio astronomy was born in the 1950s, but it was not until the late ’60s that astronomers began using these observations to trace the spiral arms of our Galaxy, forming a picture of the Galaxy we live in. Only 40 years earlier, we were debating the very existence of galaxies, and now we were mapping our Galaxy’s spiral arms using radio observations of the CO molecule found in H\textsubscript{II} regions.
2.3.14 Planetary Nebulae

A planetary nebula is an expanding shell of gas ejected from a star late in its life cycle. Appearing like greenish disks to a telescopic observer, planetary nebulae received their name from their resemblance to the gaseous planets of our Solar System. In no way are they related to planets. Rather, they are products of dying stars.

As an intermediate-mass star exhausting its core hydrogen fuel, its helium core contracts and heats to meet the energy needs of the star. The core contraction releases gravitational energy, which has two effects. First, hydrogen just outside the core begins to burn, producing a more massive helium core over time. Second, the expansion of the star’s envelope, or its outer layers, occurs. The star becomes a red giant.

For stars of less than about two solar masses, the core continues to condense until the temperature and density become sufficient to burn helium into carbon. The ignition of helium occurs rapidly, producing a flash of light, and the star’s outer shells expand, leaving a bright core that soon becomes a white dwarf star. These expanding shells become the planetary nebula.

Planetaries are often spherical. As the gas from the star expands, it sweeps up the cooler gas like a snowplow. The gas glows because of the ultraviolet light from the stellar remains at the center, and often it appears green because of an abundance of ionized oxygen (OIII), which radiates in the green part of the visible spectrum.

Planetary Nebulae in the Galaxy The Milky Way consists of two major star populations: the older halo population and the younger disk population. Because the planetary nebula phase of a star’s evolution is relatively short, we observe only those that have occurred recently in the younger stellar population. Therefore, we expect to see planetary nebulae in the disk of the Galaxy.

Moreover, the inner disk of the Galaxy has a higher star density and a higher ratio of young stars to old. For these reasons, we expect to see planetaries in or near the Galactic disk and we expect to see
an increased number toward the Galactic center.

The stars that will evolve into planetary nebulae also typically have relatively eccentric orbits around the Galaxy and, therefore, a wider range of distances above and below the Galactic disk. Thus we also expect to see increased numbers of planetaries above and below the Galactic plane.

In the Digital Universe, we see all of these trends. While the data are observationally biased, we do in fact see the planetaries trending toward the disk, with less correlation to the plane than, say, the H II regions. We also see more planetaries toward the Galactic center, as well as an increased amount above and below the plane at Galactic center.
2.3.15 Supernova Remnants

<table>
<thead>
<tr>
<th>Group Name</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>The First Fermi LAT SNR Catalog (Acero+, 2016)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Version</td>
<td>3.6</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Census</td>
<td>112 supernova remnants and 83 labels</td>
</tr>
</tbody>
</table>

A supernova remnant is the nebulous gas left over from a supernova explosion. During a supernova, one-fifth the mass of the original star can be expelled. This gas expands at great speeds, 10,000 to 20,000 km/sec, and rams into the surrounding interstellar gas. The expanding gas excites the surrounding gas, causing it to glow and producing the nebulous cloud we observe from Earth.

A supernova remnant contains a neutron star or pulsar at its center, the core of the dying star. The cloud that enshrouds the core does not last long, though. After about 50,000 years, the gas mixes into the interstellar medium and no longer glows. Astronomically, this is a very short time, so the supernova remnants we see must be left from explosions that have occurred very recently.

The most recent nearby supernova occurred in the Large Magellanic Cloud in 1987. The most studied supernova in history, SN 1987A is the latest in a series of explosions observed by astronomers. In 1054, the Chinese recorded the appearance of a “guest star” in Taurus. Bright enough to see in the daytime, the star brightened rapidly, then faded from sight over the next two years. Modern astronomers pointed their telescopes to the star and found a gas cloud about 4.4 light years in radius expanding at a rate of 1,400 km/sec. Projecting this expansion back in time, they found that the explosion began about 900 years ago, confirming the Chinese records. We call the object Messier 1 (M1), or the Crab Nebula.

In the past 2,000 years, only 14 supernovae (SN) have been recorded in our own Galaxy. Aside from SN 1054, Arab and Chinese astronomers observed one in 1006 and European astronomers observed SN 1572 (Tycho’s supernova, Cassiopeia A) and SN 1604 (Kepler’s supernova in Serpens). For the next 383 years, no supernovae were seen, until February 23, 1987, when a “new star,” SN 1987A, appeared in the Large Magellanic Cloud.

Location in the Galaxy Similar to pulsars, supernova remnants are found in the disk of the Galaxy. These remnants are short-lived nebulae and will be visible only in areas of active star formation. Because they have such short lifetimes, you would expect them to be tightly correlated with the Galactic disk and, relative to the pulsars, lie very close to the plane of the Galaxy.
Labels The labels are a hodgepodge of different catalog source names. A few are in “English,” such as the Cyg Loop for the Cygnus Loop (the Veil Nebula region). Some have names from the Third Cambridge Radio Survey Catalog that begin with 3C, while others have a \(W \) number, from the Westerlund catalog. And there are others, too numerous to discuss here.
The Orion Nebula (also known as M42) is one of the closest star-forming regions to us. About 1,500 light years away, ultraviolet light from its young, hot stars causes the surrounding hydrogen gas to glow. Astronomers call this an H\textsubscript{II} region (H\textsubscript{II} is the astronomical symbol for ionized hydrogen).

The Star Cluster We built the Orion Nebula with its accompanying star cluster for our space show, *Passport to the Universe*. In creating a 3-D model of the nebula, we needed to place the stars of the cluster within it. We turned to a study of the cluster’s stellar population by Lynne Hillenbrand, who was working at the University of California, Berkeley at the time.

The catalog from her paper contains more than 1,500 stars, about half the stars in the actual cluster. The cluster is very crowded, with a peak density of 10,000 stars per cubic parsec over a wide range of masses from a tenth the Sun’s mass up to 50 times its mass. We were presented with one problem: there are no distances in the catalog.

For the stellar distances, we needed to deduce them by statistical methods. Knowing the size of the cluster and approximating the shape to be roughly spherical, we placed each star along a line of sight through this imaginary sphere centered on the cluster. In this sense, these data are observed data, for the view from Earth is accurate. But the distance of each star has been derived from this educated-guess approach for the cluster distribution.

Viewing the Cluster Because the cluster is so small, it can be difficult to see. One way to see it is to use Partiview to simulate a telescopic view. Center your view on the cluster as best you can (the cluster is in the sword of Orion—you will see it flash as you turn it on and off). With the cluster centered, use the FOV Slider to decrease your field of view. The cluster stars should come into view.
The Nebula The Orion Nebula shows up in the H II regions (h2), the open clusters (OC), and the OB associations (OBassoc), but it receives special treatment here as a three-dimensional model recreated from Hubble Space Telescope observations of the nebula.

The hot, young stars at the center of the Orion Nebula ionize the surrounding gas—ultraviolet radiation strips electrons from their parent atoms—and when the electrons get reabsorbed by other atoms, light is emitted. Radiation from the hot stars doesn't ionize all that gas instantaneously; it takes time for the ultraviolet light to penetrate the dense gas clouds in which stars form. The radiation eats into the surrounding cloud, carving out a vast, electrically charged volume of space. Astronomers call the transition region from neutral to ionized gas the “ionization front.” Most of the emission we detect comes from the ionization front.

Furthermore, the emission of light occurs at very specific wavelengths, so astronomers can tune their observations to capture exactly these parts of the electromagnetic spectrum. Although the nebula contains primarily hydrogen and helium, astronomers also study light emitted by oxygen, sodium, sulfur, and other atoms that exist in much smaller quantities. As it turns out, these trace elements allow astronomers to determine many characteristics of the nebula—its density and temperature, for example. Based on the assumption that most of the ionizing radiation comes from a particular star in the nebula (θ1 Orionis C), astronomers have reconstructed the three-dimensional shape of the ionization front.

Most H II regions that we see lie close to the edge of dense clouds of molecular hydrogen (HII regions embedded inside such clouds remain invisible at optical wavelengths). The Orion Nebula has entered what some call the “champagne phase” of an H II region, when the young stars’ radiation has heated enough of the surrounding gas for it to expand and burst out of the dense molecular cloud in which it formed. We view the nebula from an angle that allows us to see the “far wall” of the ionization front, in front of which (from our perspective) lie the bright young stars of the Trapezium and the heated gas moving toward us at about 10 km/sec. We actually see through the veil of gas to the ionization front in large part because we are observing the finely-tuned emission from trace elements, which passes through hydrogen and helium without being absorbed.

The ionizing radiation comes primarily from a single star, θ1 Orionis C, which allowed the astronomers Zheng Wen and C. Robert O’Dell to reconstruct the three-dimensional form of the ionization front. Assuming a constant thickness for the emitting layer, one can actually determine its distance from the nebula’s brightest star. We know the spectrum of the light coming from the star, and we know how the atoms in the nebula respond to the star’s radiation—each atom acts like an
electromagnetic tuning fork, ringing with a particular frequency of light. Thus, the shape of a nebula, some 1,500 light years away from us, can be determined through careful observation and a knowledge of the laws of atomic physics.

In the Digital Universe model of the Orion Nebula, we depict the ionization front effectively as a terrain, with a flat Hubble image of the nebula mapped on the undulating surface. In reality, the ionization front has a slight thickness to it—about a third of a light year—but is quite thin compared to the overall size of the nebula, which stretches about ten light years from side to side.

The first American Museum of Natural History space show, *Passport to the Universe*, used this same model, rendered into a digital movie using advanced volumetric techniques, to voyage through the Orion Nebula. A limitation of the way Partiview displays the model causes parts of it to appear deceptively bright—when the surface folds over on itself, for example, the additive brightness results in a region that appears excessively bright.

Close into the center, near θ^1 Orionis C, we see small teardrop-shaped structures with their narrow ends pointing away from the bright star: these are protoplanetary disks (or “proplyds”) of dense gas and dust surrounding young stars. The sides of the proplyds that face θ^1 Orionis C form tiny ionization fronts of their own, which end up shielding the far side of the proplyds to form tails. Proplyds near θ^1 Orionis C have long, slender tails whereas the ones farther away have short, stubby tails.

The larger formations that one sees farther away from the center of the nebula take on a cup-like shape, with the narrow end pointing away from the nebula’s center. These enormous structures are “bow shocks” that delineate the region where high-speed winds from the central star slow from supersonic to subsonic speeds. (There may be no sound in space, but there is a speed of sound—the velocity at which a compression wave naturally travels given the temperature and density of the tenuous medium. “Supersonic” is a speed faster than that, “subsonic” is slower than that.) You can think of an H II region as a sort of tremendous explosion, taking place over millennia, and the bow shocks are part of the outward rush of material.

Both the bow shocks and the proplyds suffer from a problem similar to the aforementioned issue with the surface folding over on itself. When seen with the ionization front model behind them, they appear brighter than normal. Furthermore, the bow shocks consist of a front and back side, which can look slightly odd when viewed from some angles.

Overall, the Orion Model represents a triumph of our understanding of the dynamics and detailed structure of H II regions. Not only can we admire the beauty of the Orion Nebula as seen through a
telescope, we can measure particular characteristics of the nebula and reconstruct it in three dimensions.
2.3.17 Oort Cloud Sphere

The Oort cloud is a region of space surrounding the Sun where comets are believed to originate. Proposed by Jan Oort in the 1950s, the Oort cloud is believed to extend from 20,000–100,000 AU, or Astronomical Units, with its greatest concentration around 50,000 AU (1 AU is the average Earth-Sun distance, which equals 149 million kilometers, or 93 million miles).

Comets are small, icy bodies that orbit the Sun. Perhaps the most famous is Halley’s Comet, which travels around the Sun in an eccentric orbit every 76 years. Comets were likely ejected from the Solar System once the planets formed. Jupiter, Saturn, Uranus, and Neptune’s strong gravitational field likely ejected many comet-sized bodies out of the Solar System in random directions, where they settled into a cloud.

Occasionally, one comet in the cloud interacts with another or is perturbed by a passing star or a passing star’s comet cloud. This could send the comet toward the Sun and planets, where it may enter into an eccentric, long-period orbit.

We represent the Oort cloud with a 50,000-AU-radius, wire-frame sphere representing the location of the central concentration. Fifty thousand astronomical units is equal to about 10 light months, which is 0.8 light years, or 4.8 trillion miles. Keep in mind, though, that the Oort cloud is 80,000 AU thick and imagine a similar sphere around each star in the Atlas. Would any two overlap? Of course, stars of different luminosities would have Oort clouds of differing size, or even no Oort cloud at all, but visualizing the Oort cloud allows us to see the possibility of stars interacting.

The Oort cloud is the last outpost of our Solar System. Beyond it is the gas of the interstellar medium through which the Sun, planets, and comets move as they orbit the Galaxy once every 225 million years.
2.3.18 Equatorial Coordinates Sphere

<table>
<thead>
<tr>
<th>Group Name</th>
<th>RaDec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>—</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Carter Emmart, Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Notes</td>
<td>Also represents Earth’s radio sphere (see below), with a radius of 80 light years.</td>
</tr>
</tbody>
</table>

The equatorial coordinate system is a projection of our Earth-based coordinate system of latitude and longitude onto the “celestial sphere.” The celestial sphere is an imaginary shell that surrounds Earth upon which all objects in the sky lie. Astronomers describe an object’s position in the sky by its right ascension (RA) and declination (Dec). Declination is simply a projection of our latitude on Earth. The point directly above the North Pole (the zenith point) is the north celestial pole and is located at +90° declination. If you’re standing on Earth’s equator, your zenith—that point directly overhead—would lie on the celestial equator.

Right ascension is based on Earth’s longitude but is expressed in hours instead of degrees. Astronomers have split the sky into 24 hours (15° per hour) measured from the vernal equinox. An object’s location is then described in hours, arcminutes, and arcseconds. For example, the star Sirius in the constellation Canis Major, the brightest star in the sky as seen from Earth, is located at right ascension 6 hours, 46 arcminutes, and −16°, 45 minutes declination.

We use arcminutes and arcseconds for right ascension to remind ourselves that the length of these units depends on your declination. Close to the pole, an hour of right ascension will be quite small, while at the equator, it will be at its maximum. As with lines of longitude on Earth, lines of right ascension are not parallel with one another.

Drawing the Sphere From Earth’s perspective, the wire-frame sphere perfectly represents the equatorial coordinates. If you examine the ra_dec.speck file, you’ll see four main sections. The first section is the ellipsoid command that draws the main sphere:

```
0 0 0 ellipsoid -s line -c 1 -r 22.995075 -n 24,19
```

The second part contains a mesh statement that draws a line around the celestial equator; this has a color index of 2. Following this is another ellipsoid statement that draws lines every 15 arcminutes in right ascension and every 2 degrees in declination. This ellipsoid has a color index of 3 and is initially
set to black in the `milkyway.cf` file. If you have zoomed into a small portion of sky by adjusting the field of view, you can make these visible by setting the color index to a color, such as:

```
cment 3 0 0 0.5
```

Finally, there is a series of labels for the data group in hours for right ascension and degrees for declination.

The Radio Sphere We have not chosen the radius of this sphere arbitrarily. The RA/Dec coordinate sphere takes on another role when you’re away from the Sun. We call it the *radio sphere*.

The radio sphere describes the extent of Earth’s radio signals in space. In the early 20th century, radio began to take hold after the discovery that certain radio waves bounce, or reflect, from Earth’s ionosphere, a region in the upper atmosphere where gases are ionized by incoming solar particles. However, early broadcasts were not powerful enough to penetrate the ionospheric layers and remained confined to Earth.

Before television carrier waves, early-warning radar first used in World War II, and the detonation of atomic weapons, Earth was radio-quiet to the Universe. After the use of these and other radio emitters began, in the late 1930s and early 1940s, signals were able to escape the atmosphere and travel into space at the speed of light (300,000 km/sec or 186,000 miles/sec). Since then, we have been broadcasting to the universe and those early signals that left in 1940 have reached the 80-light-year mark.

As we look farther into space, we look further back in time. Turn on the 1-light-year grid (1ly) and imagine what happened one year ago. Broadcasts from that time, traveling at the speed of light, are now reaching the 1-light-year mark, 5.89 trillion miles from Earth. They will take an additional three years to reach the nearest star to the Sun. At the edge of the sphere are those transmissions of the 1940s: atomic testing and the echoes of World War II. Looking into space is looking back in time to a younger universe.

But Light Falls Off The radio sphere is a conceptual tool to understand light travel time and the extent of our influence in the universe. However, all light, even radio waves, dissipate as the inverse square of the distance from the source. So, the radio signals that emanate from Earth do lose strength fairly quickly. By the edge of the solar system, these signals are essentially lost in the ambient cosmic noise.
2.3. MILKY WAY DATA GROUPS

2.3.19 Ecliptic Coordinates Sphere

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Eclip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>—</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Ecliptic coordinates are based on the imaginary line traced by the Sun throughout the year. This line is called the ecliptic and, in three dimensions, also defines the plane that contains the Sun and Earth.

Because Earth is tilted on its axis 23.5° to this plane, the Sun appears to move in declination throughout the year (see “Equatorial Coordinates Sphere” for definition). Two days a year, on the vernal equinox around March 21, and on the autumnal equinox around September 21, the Sun crosses the celestial equator. Around June 21, it lies over the Tropic of Cancer (the summer solstice in the Northern Hemisphere), and around December 21, it lies over the Tropic of Capricorn (winter solstice for the Northern Hemisphere). Coincidentally, the Tropics of Cancer and Capricorn are at 23.5° north and 23.5° south latitude, respectively.

Ecliptic coordinates are described by ecliptic longitude and latitude measured in degrees (labels provided every 10°). Longitude is measured from the vernal equinox [(RA, Dec) = (0, 0)°] and the ecliptic north pole is in the constellation Draco (23.5° from the celestial north pole and the north star, Polaris). The ecliptic north pole is the point perpendicular to the plane of the Solar System and would be the north celestial pole if Earth were not tilted 23.5°.

A New Horizon In the Atlas, the ecliptic sphere is similar to the celestial sphere but is given a radius of 500 light years. Turn on the Milky Way all-sky image (mwVis) and notice the tilt of the ecliptic to the band of the Milky Way. These two planes, the plane of the Solar System and the plane of the Galaxy, are tilted about 60° to each other (62.87° to be precise).

Many of us are used to thinking of the Solar System plane as our cosmic horizon line. All the planets lie roughly within this plane, so it makes sense that this should be the plane from which we measure up, down, over, and under. However, the Milky Way band tells us otherwise. In fact, the Sun and all its planets are orbiting the center of the Galaxy once every 225 million years. Picture the Sun and its planets tipped 60°, orbiting in the Galactic plane at 220 km/sec (or just less than 500,000 miles/hour). We now see there’s a more significant horizon to obey, that of our home Galaxy. Are there any horizons beyond this?
Once astronomers understood the structure of our Galaxy in the early part of the 20th century, it was necessary to devise a coordinate system based on that structure. Galactic coordinates are defined by Galactic longitude, ℓ, and Galactic latitude, b, measured in degrees. The “equator” coincides with the plane of the Galaxy. Galactic longitude is measured from Galactic center, which is generally in the direction of Sagittarius A*, a compact radio source that astronomers now know to be about 5 arcminutes from the Galactic nucleus.

The north Galactic pole ($b = +90^\circ$) lies in the constellation Coma Berenices, while the south Galactic pole ($b = -90^\circ$) is in the constellation Sculptor. These points are perpendicular to the plane of the Galaxy. If you look toward these points in the sky, you are looking directly out of the Galactic plane. Because there are not as many stars or much gas and dust in this direction, we can see objects to greater distances when we look toward the Galactic poles. Other galaxies and clusters of galaxies are easier to find in these regions of the sky.

In the Atlas, we have given the Galactic coordinates a greenish color. Labels appear every 10° in both ℓ and b. The sphere has a radius of 1,000 light years.
2.3.21 Radio Continuum All-sky Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>mwRadio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Reprocessed Haslam 408 MHz All-Sky Map (Remazeilles+, 2014)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes, pointing out some features</td>
</tr>
<tr>
<td>Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Wavelength</td>
<td>73.478 cm</td>
</tr>
<tr>
<td>Frequency</td>
<td>408 MHz</td>
</tr>
</tbody>
</table>

The 408 MHz all-sky map is one of the most complete radio maps of the sky and remains critical to our understanding of the universe.

At this frequency, the radio continuum is mainly showing hot, ionized interstellar gas. More specifically, observations at this wavelength show light from the scattering of free electrons in interstellar plasmas. This hot gas is typically the result of a supernova explosions that compress and heat interstellar gas.

The most striking feature of the map is the sweeping arc of light in the northern sky. This is called the North Polar Spur, and was thought to be a hot interstellar bubble of gas associated with a nearby supernova that occurred thousands of years ago, or associated with the Scorpius-Centaurus star-forming region around 500 light years from earth. However, it is not thought that this emission is associated with the outflows of hot gas from the inner Galaxy. This phenomenon remains a hot topic of study, decades after its discovery.

Other objects in the map include the Orion Nebula, the Crab Nebula, the Large and Small Magellanic Clouds, the Andromeda Galaxy, and the Vela and Cassiopeia A supernova remnants.

The false colors represent intensity, with reds and yellows representing higher intensity than aqua and blue.
Warm neutral hydrogen radiates in the radio spectrum at a wavelength of 21 centimeters. In the hydrogen atom, the electron and proton are magnetized, giving each a north and south pole just like a bar magnet. Any particular neutral hydrogen atom can exist in two configurations: a lower energy state, in which the north poles of the electron and proton are pointing in the same direction, and a higher energy state, in which they point in opposite directions.

The warm interstellar gas provides the energy to boost the atom into this higher energy state. Once the atom returns to its lower energy state, it gives off energy at a wavelength of 21 cm. The low-energy light in this survey reflects the small difference between these atomic states.

This radiation is important because it penetrates the dust in the interstellar medium, allowing us to see it across the galaxy. The 21-cm light is perhaps the most important tracer we have for determining the structure of our Galaxy.

This map conveys more information than intensity. The brightness is proportional to the intensity (the number of atoms along the line of sight) on a log scale. The color delineates the radial velocity, the speed of the gas along the line of sight. Orange, yellow, and green hues indicate gas that is moving away from us, while blue and violet colors show gas that is moving toward us.

Labels reveal some of the prominent features of the map, including the Large and Small Magellanic Clouds, the Andromeda Galaxy, and M33, and the wispy strands of gas that surround us.
2.3. MILKY WAY DATA GROUPS

2.3.23 Carbon Monoxide All-sky Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>mwCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>The Milky Way in Molecular Clouds (Dame+, 2001)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes, pointing out some features</td>
</tr>
<tr>
<td>Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Wavelength</td>
<td>2.6 mm</td>
</tr>
<tr>
<td>Frequency</td>
<td>115 GHz</td>
</tr>
</tbody>
</table>

In order to map the large clouds of molecular hydrogen (H$_2$), we look for carbon monoxide (CO). Carbon monoxide is about 10,000 times less abundant than molecular hydrogen, yet we see traces of CO via its radio signature line at 2.6 millimeters (115 GHz). Using radio telescopes, astronomers observe this portion of the radio spectrum where the atmosphere is semitransparent.

Normally, CO molecules would be broken apart by the ultraviolet radiation from stars. However, the CO molecules remain shielded deep inside dense, dusty molecular clouds of hydrogen from the harmful UV rays in interstellar space. This allows scientists to infer the existence of large molecular clouds by observing CO.

The Orion Nebula is the best example of a nearby giant molecular cloud. The nebula sits on the edge of a much larger cloud that is invisible to us in optical light. However, the cooler atomic hydrogen and CO radiate in this region of the EM spectrum. We observe CO mainly in the Galactic plane, where most of the gas and dust are concentrated in our Galaxy and star formation occurs. If we see CO, we can expect to see new stars.

CO intensity is represented by colors mapped to the intensity of the CO spectral line. The violet and blue regions are less intense and the red and yellow regions are of higher intensity. The survey covers the entire range in galactic longitude but only a narrow band centered on the galactic equator. Because CO is confined to the plane of the Galaxy, this is a reasonable range in galactic latitude.

Labels highlight the some of the objects and structures: the Orion Nebula, the California Nebula in Perseus, and the Rho Ophiuchi Cloud, a structure we’ll see in many other all-sky images.
2.3.24 Far Infrared Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>mwFIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Ryan Wyatt (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Version</td>
<td>3.0</td>
</tr>
<tr>
<td>Wavelength</td>
<td>100 microns</td>
</tr>
<tr>
<td>Frequency</td>
<td>3,000 GHz</td>
</tr>
</tbody>
</table>

IRAS (InfraRed Astronomy Satellite) was launched in January 1983 and orbited 900 km above Earth, observing the infrared sky for much of that year. With its 56-centimeter (22-inch) mirror, IRAS observed in the near and far infrared at 12, 25, 60, and 100 micron wavelengths.

Infrared light comes from cooler objects in the Universe: planets, comets, asteroids, cool stars, and dust in space. When astronomers talk about dust, they do not mean those pesky particles that settle on your table tops. Astrophysical dust refers to very, very small particles. Dust was once thought to be particles composed of 10,000 atoms or more, but thanks to IRAS and other space telescopes, we now understand that it can include smaller particles of just 100 atoms. These microscopic particles are normally quite cold, close to absolute zero even, but when ultraviolet light shines on them, they can increase in temperature by 1000 Kelvin (1300°F).

IRAS’s most important discovery was the extent to which dust pervades the Galaxy. IRAS provided us with the most detailed map of interstellar dust to date. Dust is created when stars explode and, therefore, is present where stars are forming. For this reason, dust is abundant within interacting galaxies where mergers trigger new stars to form.

This image is in the 100-micron far infrared (FIR) survey. Astronomers consider far infrared light to be in the range of a few tens of microns to about 300 microns. This corresponds to objects with temperatures of about 15 Kelvin to about 120 Kelvin and includes cold dust particles and cold molecular clouds. In some of these clouds, new stars are forming and glow in FIR light.

The center of our Galaxy glows brightly in FIR light, where dense clouds of dust are heated by the stars within them. This results in the bright band of light toward Galactic center. The survey is rich in detail, with bright glows in areas of star formation, like the Orion complex and Rho Ophiuchi. Bright extragalactic sources can be seen too, like the Andromeda Galaxy and the Small and Large Magellanic Clouds.
2.3. MILKY WAY DATA GROUPS

2.3.25 IRAS Composite All-sky Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>mwIRASc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IRIS: A New Generation of IRAS Maps (Miville-Deschênes+, 2005)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Carter Emmart (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Version</td>
<td>3.0</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Composite of 25, 60, and 100 microns</td>
</tr>
<tr>
<td>Frequency</td>
<td>Composite of 12, 5, and 3 THz</td>
</tr>
</tbody>
</table>

IRAS (InfraRed Astronomy Satellite) was one of the most successful astronomical missions, increasing the number of known cataloged objects by 70%. The orbiting telescope observed in the mid and far infrared at 12, 25, 60, and 100 microns. This all-sky survey is a composite of the 25, 60, and 100 micron observations. (More information on IRAS can be found in “Far Infrared Survey.”) This map is a re-reduction of the original image.

Image Features The map is bright across the Galactic plane, as we might expect. Toward the center of the Galaxy, in the direction of Sagittarius, the infrared light is tightly constrained to the plane. In the opposite direction, toward Orion, the band of light seems to break up, becoming more clumpy as we look away from the center of the Galaxy.

Many objects glow in this part of the sky. The Orion Nebula and the Rosette Nebula, two nearby star-forming regions, are bright. The Andromeda Galaxy is visible but faint, and the Rho Ophiuchi cloud is visible above Scorpius. There is a faint glow over the Pleiades star cluster, and a bright glow due to Rho Ophiuchi.
2.3.26 WISE All-sky Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>mwWISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Wide-field Infrared Survey Explorer (NASA/JPL-Caltech/UCLA, 2012)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Version</td>
<td>3.0</td>
</tr>
<tr>
<td>Wavelength</td>
<td>3.4, 4.6, 12, and 22 microns</td>
</tr>
<tr>
<td>Frequency</td>
<td>88, 65, 25, and 14 THz</td>
</tr>
</tbody>
</table>

The Wide-field Infrared Survey Explorer (WISE) was designed to observe the entire sky at four infrared wavelengths over a ten-month period. Probing the sky in the mid-infrared spectrum yielded new findings as the telescope peered through dust clouds to see star-forming regions and star clusters.

The blue regions are the 3.4-micron band, which is sensitive to stars and galaxies, and the 4.6-micron band, which is more sensitive to substellar sources like brown dwarfs. Green regions are the 12 micron data, where the telescope is more sensitive to thermal energy from asteroids. And, the 22-micron band will pick up the glow from dust in star-forming regions and is colored red in this map.

The composite map shows, in higher resolution, the infrared sky. The Orion Nebula, the Pleiades, the Andromeda Galaxy, the Rho Ophiuchi complex, and the Small and Large Magellanic Clouds are easily visible.

Also, you may notice a ring around a star near Orion’s head. The star at the center of this ring is Lambda Orionis, an O star that gives off a lot of radiation. In later wavelengths, we’ll see the glow around this star, but in this bandpass, we only see the outer ring of what is really a glowing bubble of hydrogen gas. We see the outer edge of the glow, which is cooler than the inner part of the bubble.

WISE bridged our knowledge in this part of the infrared spectrum, and is a precursor to the next major space telescope, the James Webb Space Telescope, the successor to Hubble.
2.3.27 Two Micron (2MASS) All-sky Survey

The Two Micron All-Sky Survey (2MASS) is an infrared (IR) survey of the sky. Because it is looking in the IR and this is a composite of the 2MASS point-source catalog, most of the light from this survey is starlight. In visible light, clouds of gas and dust obscure our view. However, in IR the longer wavelengths of light can penetrate these clouds without being scattered, thereby revealing stars that would normally be hidden to our eye.

The 2MASS data were taken over 1,400 nights from 1997 to 2001 with two, 1.3-meter telescopes located on Mt. Hopkins, Arizona, and Cerro Tololo, Chile. Each telescope had identical IR detectors that could observe light at 1.24, 1.66, and 2.16 micron wavelengths. The 2MASS Image Atlas contains more than 4 million images in these wavelengths that cover 99.998% of the sky.

The 2MASS image contains many point sources. If you turn up the image’s brightness (using the Alpha Slider) and turn off the stars, you will see many of the stars in the image align with the constellation outlines. Many of the stars, particularly cooler stars, shine in the infrared. If you look toward Orion, you’ll see many of the hotter stars in that constellation are not visible or as bright. Conversely, Betelgeuse, the red giant, is bright, radiating much of its light in the infrared.

The Galaxy itself is quite prominent, with the bright disk and the Galactic bulge toward the center of the Milky Way and virtually no disk showing toward Orion, away from Galactic center. Clouds of gas and dust are also apparent and are a brownish color, correlating exactly with the carbon monoxide all-sky survey (mwCO group).

Few features pop out as they do on other surveys. The Large and Small Magellanic Clouds are visible, as is the glow of the Pleiades star cluster, but beyond these, the survey is mainly starlight.
2.3.28 Visible All-sky Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>mwVis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Axel Mellinger (Universitaet Potsdam)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Ryan Wyatt (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Version</td>
<td>3.0</td>
</tr>
<tr>
<td>Wavelength</td>
<td>400 nm − 700 nm</td>
</tr>
<tr>
<td>Frequency</td>
<td>750 THz − 430 THz</td>
</tr>
</tbody>
</table>

In ancient times, our ancestors knew of the stars, the “wandering stars” (planets), and the Milky Way. Aside from the occasional comet, “guest star” (supernova), or aurora, these were the only cosmic features visible to them.

The Milky Way has been the subject of many myths and legends. The Greeks believed it to be a river of milk pouring from the breast of Hera, the wife of Zeus, and called it a “galaxy,” from the Greek word for milk. The Romans called it the *Via Lactea*, or the Milky Way. But it was not until 1610 that Galileo first observed this faint band of light with his telescope, discovering that it was composed of innumerable faint stars.

In the past 400 years, astronomers and philosophers have speculated about the nature of this star system. It was not until the 20th century, though, that astronomers began to understand the nature and structure of our Galaxy, by looking at that band of light across our sky and comparing it with other “island universes,” like the Andromeda Galaxy.

Image Features Several features of this band of light become obvious upon inspection (particularly if you increase its *alpha* value using the Alpha Slider). You will see the brightest part of the Galaxy if you look toward Galactic center [turn on the Galactic coordinates (*Galac*) and bring \((l, b) = (0, 0)^\circ\) to center screen]. In this direction, looking toward Scorpius and Sagittarius, lies the center of the Galaxy. The bright haze is the light from millions of stars; the dark lanes are foreground dust, obscuring our view. Relative to the rest of the Milky Way band, the center forms what astronomers call a “bulge” of light, whereas the rest of the band appears thinner.

If you turn to look in the opposite direction, toward Orion \([(l, b) = (180, 0)^\circ]\), you will see that the Milky Way is not too bright on this side of the sky. Here we look out of the Galaxy through what remains of the Galactic disk between the Sun and its outer edge.

This image is composed of many photographs of the sky, carefully knitted together in this giant
mosaic. The stars have been removed for the most part, but the bright stars show some residual light.
2.3.29 Hydrogen-Alpha All-sky Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>mwHalpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Doug Finkbeiner (Princeton)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Wavelength</td>
<td>656 nm</td>
</tr>
<tr>
<td>Frequency</td>
<td>457 THz</td>
</tr>
</tbody>
</table>

Hydrogen-alpha, or H-alpha, is a term that describes light from the ground state of the hydrogen atom. When an electron in an atom moves from one energy level to a higher one, we say the atom is excited. But the electron does not move to this higher energy level without the atom absorbing energy from either another atom or a passing photon (packet of light).

Once the atom is excited, it cannot remain in that state for long before it wants to return to its ground state. When the electron moves back down to the lower energy level, a photon is released at a wavelength commensurate with the energy between the two levels. For the H-alpha line, this energy difference translates to a wavelength of 656 nanometers (nm) and is in the extreme red end of the visible spectrum.

This survey of the sky is a snapshot of light from this wavelength. We can see this light with our eyes, but we also see the integrated light from the entire visible spectrum. If we could block the rest of that light so that we could see only light at 656 nm, we would see this picture of the Milky Way in the night sky.

Image Features One feature of the sky at this wavelength is the presence of large, spherical bubbles surrounding hot stars. One of the most prominent is the bubble around Lambda Orionis. This is an O star and is among the hottest we see. It lies about 1,000 light years away and is so hot that it ionizes the surrounding hydrogen gas, causing it to glow.

We can perform a crude size determination on the ionization cloud. If the star is 1,000 light years away and the cloud has about a 3-degree radius in the sky, then, using a simple triangle, we can determine that the cloud extends about 60 light years in radius.

Other nebulae and H II regions are visible, like the California Nebula, and what could be called the Orion nebluplex. Among the sights in the lower part of Orion, the Great Nebula of Orion is among the most beautiful star-forming regions in our neighborhood. Just above it is the Horsehead Nebula, an
emission nebula with a small, obscuring dust cloud in the shape of a horse’s head. Surrounding this is the extended supernova remnant called Barnard’s Loop.

We also see galaxies that emit in H-alpha, including the Andromeda Galaxy and the faint M33, the large face-on spiral in Triangulum. In the southern sky are the Large and Small Magellanic Clouds (LMC and SMC), two nearby (about 130,000 light years) satellite galaxies that have collided with our Galaxy.

This H-alpha view of our sky reveals where the hot, ionized hydrogen is. For the most part, it lies in the plane of the Galaxy but is above or below the plane when objects are relatively nearby in the Galactic foreground.
One of the last major regions of the electromagnetic spectrum without an all-sky map is in the ultraviolet. The map we include in this data group is, in fact, not complete. But, we include it because it the best data we have for the ultraviolet sky.

These data are from the Galaxy Evolution Explorer (GALEX), an orbiting UV telescope which operated between 2003 and 2012. This is the near ultraviolet map of the diffuse light in the sky. Ultraviolet light stems mainly from hot plasma between about 1,000 K and 10,000 K, which can be found in nearly all corners of the universe: around stars, nebulae, planetary atmospheres, in the interstellar gas, nuclei of galaxies, near black holes, and the intergalactic medium.

While this map does not show detailed structure, and it is not seamless, we feel there's value in seeing the best we have for UV light.
2.3.31 X-ray All-sky Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>mwXray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>ROSAT Soft W-ray All-sky Survey (Digel & Snowden (GSFC), ROSAT, MPE, NASA, 1995)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.65 nm</td>
</tr>
<tr>
<td>Energy</td>
<td>0.75 keV</td>
</tr>
</tbody>
</table>

The only all-sky survey of the x-ray continuum was taken with the Röntgen Satellite, or ROSAT, and was published in 1995. While the resolution is fairly low, it remains the best all-sky picture of the x-ray sky.

This particular map is the 0.75 keV, or 1.65 nm, soft x-ray band and shows local, Galactic, and extragalactic x-ray emission. These emissions are mainly from hot, tenuous gas. But, x-rays at lower energies are absorbed by cold, interstellar gas, indicated by the darker areas of the map.

Many objects are visible in this map. Perhaps the most prominent is the large glow of the Vela pulsar. Many other supernova remnants appear in this map, including the SN 1006, the Cygnus Loop (which includes the Veil Nebula), Cassiopeia A, Tycho, the Crab Nebula, and Puppis A. There are also fainter wisps of x-ray gas around some other objects like the Orion Nebula, the Pleiades, and other young, hot clouds.

Also, there are some extragalactic sources that appear in this map, including the Large and Small Magellanic Clouds, the Virgo Cluster, the Perseus Cluster, and wisps around some of the other nearby galaxy clusters. The galaxy M87, in the Virgo Cluster, was the first x-ray source detected outside the Milky Way in 1966. These sources are attributed to the hot gas that exists throughout and around each cluster.
Gamma rays are the most energetic light in the universe. This radiation arises from radioactive decay of the atomic nucleus. In the cosmos, gamma rays are produced when cosmic rays interact with the atmosphere, or when high-energy electrons are produced and interact with other particles. Mostly, in this map, we’re seeing energetic particles, accelerated in the shock waves of supernova remnants, collide with atoms and even light in interstellar gas.

Gamma radiation can ionize other atoms and is, therefore, not the sort of light we want to be around. As the light passes through our body, it will do real damage to our cells. The only effective protection is to be shielded by a large, thick layer of concrete or other solid material. Luckily, Earth’s atmosphere protects us from natural gamma ray radiation.

This all-sky view was collected by the Fermi Space Telescope and is an improvement over the first gamma ray telescope called Compton. The map shows sources of gamma rays, and these include supernova remnants, pulsars, active galaxies, and even a globular cluster or two. And, we see radiation from all scales: local, Galactic, and extragalactic.

Among the pulsars that appear in Fermi, Vela glows brightly in the disk of the Milky Way. Geminga, in Gemini, and the Crab Nebula are also very bright. A handful of supernova remnants, including the Cygnus Loop, Cassiopeia A, Tycho SN 1572, and IC 443, shine brightly in the map. The Orion Nebula and associated diffuse gas is also present, along with a few dozen active galaxies, like M87, NGC 1275, and Centaurus A. And, a few normal galaxies, the Small and Large Magellanic Clouds, the Andromeda Galaxy, and the starburst galaxies M82 and NGC 253, also appear, albeit dimmer.
2.3.3 Deep-Sky Images

<table>
<thead>
<tr>
<th>Group Name</th>
<th>DSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>NOAO, see dso.speck file for image credits</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Nate Greenstein, Matt Everhart, Ryan Wyatt, Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Version</td>
<td>2.2</td>
</tr>
<tr>
<td>Census</td>
<td>65 images</td>
</tr>
</tbody>
</table>

“Deep-sky object” is a term familiar to avid sky watchers as an object in the sky that is not a star or planet. These include open and globular star clusters, nebulae, supernova remnants, and even galaxies. Often invisible to the unaided eye, they require binoculars or a telescope to view them.

The first list of such objects was compiled by Charles Messier (1730–1817), a French astronomer who was searching for comets. Comets resemble diffuse, fuzzy objects, and with the low-power optics of the day, star clusters, nebulae, and galaxies looked like diffuse comets too. In order to distinguish these static nebulae, clusters, and galaxies from the comets that move in the sky, Messier created a list of the stationary diffuse objects so he would not confuse them with the comets he was searching for. The resulting list contains 110 objects beginning with Messier object 1, or M1, also known as the Crab Nebula, and ending with M110, a small satellite galaxy of the Andromeda Galaxy, which itself is called M31.

The DSO data are 2-D images of Messier objects placed in 3-D space. Not only do we place our images at the proper location and give them the correct orientation, we also size them accurately so that you can fly to the globular cluster M13, for example, and see just how small the cluster of hundreds of thousands of stars is relative to the rest of the Galaxy.

The group consists mainly of open star clusters, globular clusters, diffuse nebulae, and planetary nebulae. All together, sixty-seven of the Messier objects are represented in 65 images (M32 and M110 appear in the image for M31). We do not include galaxies outside the Local Group or objects for which we have 3-D data, which is often superior to a 2-D image. For example, you will not see the Orion Nebula (M42 and M43) because we have a 3-D Orion Nebula model (OriNeb group) in the atlas. Similarly, we have 3-D stars in place for M45 (Pleiades), M44, and a few other open star clusters. Below we list the Messier objects included in the DSO group.
2. THE MILKY WAY ATLAS

Object type	Messier objects included
Open star clusters | 6, 7, 11, 16, 18, 21, 23–26, 29, 34–39, 41, 46–48, 50, 52, 67, 93, 103
Globular star clusters | 2–5, 9, 10, 12–15, 19, 22, 28, 30, 53–56, 68–72, 75, 79, 80, 92, 107
Planetary nebulae | 27, 57, 76, 97
Diffuse nebulae | 8, 17, 20, 78
Supernova remnants | 1
Galaxies | 31, 32, 33, 110

You may know some of these objects by their common names:

- M1 Crab Nebula
- M8 Lagoon Nebula
- M16 Open cluster (in the Eagle Nebula)
- M17 Omega Nebula
- M20 Trifid Nebula
- M27 Dumbbell Nebula
- M31 Andromeda Galaxy
- M57 Ring Nebula
- M97 Owl Nebula

I Don’t See Any Images! By default, the DS0 data group is on when you launch the Milky Way Atlas, but you are not likely to notice them just as you don’t typically see these objects in the night sky. This is due to their size, which in most cases is quite small. One way to pick them out is to turn on the labels for the group. To see the image, you can either zoom in from your current location on Earth, or fly out to the object.

To view the images from Earth’s position, you can use Partiview to simulate how we see these objects in the night sky when looking through binoculars or a telescope. Center one of the objects in your view and select fov from the Slider Menu. The default value for the Digital Universe is 60°. To zoom in, decrease the field of view by moving the slider to the left. You may need to center the object as you zoom in. The value to the left of the slider is the field of view (in degrees) of your window in the up-down direction. A value of 5–10 degrees might simulate a pair of binoculars while a value less than 0.5 replicates a telescopic view.
2.3. MILKY WAY DATA GROUPS

Of course, you can also exaggerate the size of the images by changing the polygon size of the data group, but we don’t recommend this as a means of seeing the images since it grossly misrepresents these data. However, if you do increase the polygon size by choosing polysize from the Slider Menu, a polygon size of 1.0 will bring them back to their actual size.

Image Credits For information such as credits, place your mouse over an image and hit the p key. This picks an object in your view, which will be challenging if you have a lot of data in your view. For example, if you zoom in on M27, the Dumbbell Nebula, and hit the p key while your mouse is over the image, you will see the following one-line report in the Console Window:

```
[g28]Picked -121.574 -217.853 -16.117 (w121.574 217.853 -16.117)
"M27 (Joe and Gail Metcalf/Adam Block/NOAO/AURA/NSF)"
@250 (of 2); texture 27 radius 0.2568
```

The first numbers describe the location of the object selected, followed by the object name and image credit in quotes, followed by other metadata values associated with the data point.
A problem that continues to baffle astronomers today is defining the structure of our star system, the Milky Way. Because we reside within our Galaxy, we cannot see the larger picture of what the Galaxy actually looks like. Even today, astronomers continue to debate the structure of the Milky Way with more uncertainty than that of other galaxies that are millions of light years away.

In 1918 and 1919, a series of papers by Harlow Shapley were published that described the dimensions of our Galaxy. Using the distribution of globular clusters in the sky, Shapley deduced that the center of our star system was in the direction of Sagittarius and that the distance to those clusters was greater than anyone had ever proposed.

A great debate had taken the astronomical world by storm. Was the Andromeda Nebula inside our own Galaxy, or was it a distant extragalactic object similar to our Galaxy? Within five years, Edwin Hubble solved the debate by observing Cepheid variable stars in the Andromeda Nebula, which allowed him to measure the distance to the star system, now called a galaxy with confidence.

This debate and its outcome gave astronomers a better idea of how the Galaxy was structured. With other galaxies as examples, it soon became clear that we were inside a spiral galaxy like Andromeda.

The Galaxy in 2-D The exterior view of the Milky Way is simply a two-dimensional image. The image is that of NGC 1232, a galaxy thought to resemble our Milky Way. The image has been properly sized and functions as a placeholder, allowing one to gauge the scale of the Galactic disk relative to other data sets in the Atlas.

You can adjust the brightness of the Galaxy using the Alpha Slider. Its size is specified in the speck file but is also affected by commands in the milkyway.cf file.

The features you see in the image, of course, do not represent our Galaxy but resemble similar features found in our Galaxy. The Sun is just on the inside of the smaller Orion Arm, sometimes called the Orion Spur, as it might connect the Sagittarius and Perseus arms. The features seen in this image should be used as a guide only, since they only reflect the structure of NGC 1232.
2.3.35 Galaxy Arms

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Arms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The Arms data group is an image that contains labels for the Milky Way's spiral arms. We label them in this manner ("hard coding" the labels into an image rather than having native Partiview labels) so that they can retain their size, shape, and location superimposed over the Galaxy's spiral arms.

We reiterate that these are guides and not based in reality, because we never have this view of the Milky Way and can only infer its structure. The labels in this data group build upon the scientifically informed positioning of the galaxy image, and these arm labels are anchored in those presumptions.

The sun is located in the Orion Spur, a subarm that's likely an offshoot from a major spiral arm. As we look away from the center of the Galaxy, we look toward the Perseus Arm, and beyond that is the Outer Arm. If we look toward the center of the Galaxy, we are beside the Sagittarius-Carina Arm, and inside that is the Scutum-Centaurus Arm, and inside that is the Norma Arm and the 3 kiloparsec arms that surround the Galactic center.
2.3.36 Star Orbits

<table>
<thead>
<tr>
<th>Group Name</th>
<th>StarOrbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Sébastien Lépine (AMNH)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Sébastien Lépine (AMNH), Brian Abbott (AMNH/Hayden Planetarium)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Version</td>
<td>3.0</td>
</tr>
<tr>
<td>Census</td>
<td>7 star orbits</td>
</tr>
</tbody>
</table>

Everything in the Universe moves. We experience the rotation of Earth when day turns to night, and we experience Earth’s orbit around the Sun as the seasons change. Unbeknownst until the 20th century, the Sun and its family of planets, dwarf planets, asteroids, and comets move through the Milky Way galaxy at about 828,000 km/hr (514,000 miles/hr). We orbit the Milky Way in a relatively stable orbit, one circuit around—our “galactic year”—takes about 225 million years. The last time the Sun was in the same spot in the Galaxy, dinosaurs ruled the Earth.

In this data group, we illustrate orbital trajectories for seven stars with varying speeds and directions. There are a few hundred billion stars in our Galaxy, and here we see how seven of them will move over the next billion years.

The Sun is the shown by default, and the other orbits may be “turned on” by changing their color from black to a color of your choosing. The chosen stars demonstrate a variety of orbital motions in the Galaxy, and include the Sun, the nearby Barnard’s Star, Kapteyn’s Star, and a few other less well known stars. To reveal one of these, set a color for its color index.

<table>
<thead>
<tr>
<th>Color Index</th>
<th>Star Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sun</td>
</tr>
<tr>
<td>2</td>
<td>Barnard’s Star</td>
</tr>
<tr>
<td>3</td>
<td>LSR J1826+3014</td>
</tr>
<tr>
<td>4</td>
<td>PM J13420-3415</td>
</tr>
<tr>
<td>5</td>
<td>Kapteyn’s Star</td>
</tr>
<tr>
<td>6</td>
<td>Lacaille 9352</td>
</tr>
<tr>
<td>7</td>
<td>LSR J0822+1700</td>
</tr>
</tbody>
</table>

In the milkyway.cf file, colors are already predefined for these stars, you just need to uncomment the appropriate lines and comment the lines below that make the orbit black. If you want to turn one on in Partiview, just type `cment 4 1 1 1`, to turn on the orbit for the star PM J13420-3415. Or, choose whatever red-green-blue combination you like.
2.3. MILKY WAY DATA GROUPS

Each of these orbital paths show where the star will go in the next billion years. The Sun, which is fairly stable, will revolve around the center of the Galaxy about 4 times in one billion years. Many of the other stars will take far less stable paths, and change quite a lot over the course of a billion years. One star, PM J13420-3415, is a halo star and orbits perpendicular to the Galaxy’s disk. One can imagine the night-sky view from a planet around that star. Half the year the sky would be filled with a view of the Milky Way.

A Closer Look at the Sun’s Orbit

While the Sun appears to orbit the Milky Way with a regularity, its trajectory is not entirely stable. The Sun travels at an average speed of 828,000 km/hr (514,000 miles/hr), corresponding to about 1/1300 the speed of light. It is traveling in the direction of the constellation Cygnus.

Impossible to see on this large a scale, the orbit dips above and below the Galaxy’s midplane. Like riding a wave, we reach a maximum height above the Galaxy, then cross the plane and hit a maximum below the plane. The Sun’s orbit, then, has a period and amplitude. The amplitude, the maximum distance above and below the plane, is about 160 — 300 light years. Currently, we are about 45 — 70 light years above the plane and heading toward the maximum. The Sun passed through the Galactic midplane about 2.5 million years ago, and the half period, the time between two encounters with the midplane, takes roughly 30 million years.

Imagine how our night sky changes due to this periodic motion. When we are centered on the plane of the Galaxy, the band of light across the sky will be at its thinnest. Conversely, when we are at our maximum above or below the plane, the band of light will appear a little thicker, occupying a little more sky. Beyond the appearance of our night sky, some scientists believe that our position above or below the Galactic plane may even cause mass extinction events on Earth, but this has not been shown conclusively.

Barnard’s Star, the fourth-closest star to the Sun, has the highest proper motion of any star in the night sky (see the NearStars data group for more on proper motion). While its path generally remains in the Galactic disk, its radius from the Galactic center varies greatly. Currently, the Sun and Barnard’s star are moving toward one another as we travel along our Galactic orbit. In about 10,000 years, Barnard’s star will be only 3.8 light years away, making it the closest star to the Sun.

Not all stars are so well behaved. Some move wildly above and below the Galactic disk. Imagine how your night sky will appear under these circumstances. If we were living on a planet whose host star
was high above or below the disk, we would have a magnificent, face-on view of the Galaxy. The star PM J13420-3415 is an example of such a star. At its maximum distance above the Galactic disk, the night sky on a planet similar to Earth would appear fully illuminated by the Galaxy for part of the year, and appear dark the remaining time as we look away from the Galaxy.

PM J13420-3415 is only one of billions of stars that orbit the Galaxy in this fashion. The Milky Way contains a population of old, mainly dim, stars that are distributed spherically about its center. Astronomers call these halo stars. We cannot see many of these stars, let alone derive accurate distances to them. The most visible objects in the Galactic halo (Halo) are the globular clusters (GC), which are dense concentrations of halo stars.
2.3. MILKY WAY DATA GROUPS

2.3.37 Galactic Bar

Group Name	Bar
Prepared by	Carter Emmart & Brian Abbott (AMNH/Hayden)
Labels	No
Version	2.0

The Milky Way has two main structural elements: the disk and the spherical components. The disk is a thin layer of stars, gas, and dust that contains the Galaxy’s spiral arms. The spherical component includes the *Galactic bulge* and the *Galactic halo*, Bulge and Halo groups, respectively. The bulge, at the center of the Galaxy, contains both old and young stars with some gas and dust.

Most of the mass and luminosity of the Galaxy are contained in the *Galactic bar*, an oblate spheroid located at the center of the Galaxy. The bar is shaped like an American football, with axes of \((a_x, a_y, a_z) = (5500, 2050, 1370)\) light years. Because we are located on the outskirts of the Galactic disk, we cannot see directly to the center of the Galaxy with all the gas and dust in our way. How do we know there is a bar if we cannot see it in the visible spectrum?

The main evidence for the existence of a bar is the infrared luminosity differences around the Galactic center. Because dust obscures our view of the Galaxy, we must turn to the near infrared (around 2–4 microns) to peer through it. In these wavelengths, the intensity on one side of the Galactic center is higher than it is on the opposite side. Astronomers deduced that there must be a triaxial bar present, with the bright side of Galaxy center corresponding to the end of the bar that is closest to us. Currently, the long axis of the bar (which is parallel to the Galactic plane) is believed to be inclined 30° to the line connecting the Sun and the center of the Galaxy.

We represent the bar as a yellow ellipsoid with a glow texture at its center. The glow is composed of three polygons that lie in the x, y, and z planes, respectively. The glow can be turned off with the Polygon Toggle Button.
2.3.38 The Galactic Halo

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Halo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
</tbody>
</table>

Surrounding the disk of the Milky Way is the spherical Galactic halo. Unlike the population of the disk, where stars continue to form, the halo population is devoid of gas and dust and, therefore, star formation. It contains cooler, dimmer stars left over from an era of star formation in the Galaxy’s early history. There are no young, luminous stars in this population. Many of the stars here were perturbed out of their orbits in the disk. It takes time for these perturbations to occur, so we tend to only see older, redder stars in the halo.

The main player in the Galactic halo is the system of globular clusters (turn them on with the GC button). Numbering about 150, the Milky Way’s globulars are spherically distributed about the Galactic center, and most are within the halo. The stars in the halo are so intrinsically dim that it is difficult to see them unless they are very close to the Sun. These stars travel in elliptical orbits about the center of the Galaxy that are not confined to the disk but are distributed throughout the spherical halo.

Many properties of the halo are still under consideration by astronomers. With the introduction of dark matter and the discovery of more small satellite galaxies around the Milky Way, the halo seems to come under continual scrutiny. We place the radius of the halo at about 134,000 light years (41 kpc); however, some astronomers believe it to be far larger, perhaps as much as 300,000 — 800,000 light years in radius.
2.3. MILKY WAY DATA GROUPS

2.3.39 Sun-Centered Coordinate Grids

<table>
<thead>
<tr>
<th>Group Name</th>
<th>1ly, 10ly, 100ly, 1kly, 10kly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>—</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The Sun-centered coordinate grids consist of two superimposed meshes. One mesh is a square coordinate grid with lines through the origin and lines appearing halfway along the grid’s length. For example, if the grid is 1 light year, then grid lines would cross the origin, mark the 0.5-light-year (6-light-month) point, and mark the edge of the grid. The other mesh forms lines of constant radius. These are rings around the Sun (not to be confused with orbits) that mark where these distances lie in space.

The grids in each of these data groups are nested within one another and range from the light-year scale to the 10,000-light-year scale. The grids are placed in the Galactic plane.

Using the Grids Each grid is centered on the Sun and covers a size scale that is well suited for particular data sets in the Atlas. The units are in light travel time and appear as \(\text{lm} \) for light months, \(\text{ly} \) for light years, and \(\text{kly} \) for kilo-light years (1,000-light year units).
2. THE MILKY WAY ATLAS

1ly The light-year grid consists of lines of constant radius for each light month and an overlying grid in increments of 6 light months. Displaying the Oort cloud \((\text{Oort})\) along with this grid provides a good measure for the Oort cloud sphere (about 10.5 light months).

10ly A 10-light-year grid with lines of constant radius every year. Viewing the grid face-on along with the stars, one is able to see the locations of those nearby stars close to the plane. While this is not an exact measuring tool, it's easy to see that Alpha Centauri is just more than 4 light years and Sirius is between 8 and 9 light years.

100ly A 100-light-year grid with lines of constant radius every 10 light years. Here we can see the radio sphere's edge \((\text{RaDec})\) at 80 light years with many of the exoplanetary systems \((\text{Expl})\).

1kly A 1,000-light-year (1 kilo-light year) grid with lines every 500 light years and lines of constant radius every 100 light years. On this scale we see several of the local OB associations \((\text{OBassoc})\) that lie in the Orion Arm (the Sun is located on the inner edge of the Orion Arm, sometimes called a spur), as well as a few of the nearest open clusters \((\text{OC})\).

10kly The 10 kly (10,000-light-year) grid is large enough to view those nearby data sets that are confined to the plane of the Galaxy, more or less. All the OB associations \((\text{OBassoc})\) are found within the grid, as are data from the open clusters \((\text{OC})\), supernova remnants \((\text{SNR})\), and H II regions \((\text{h2})\).
2.3.40 Galaxy Coordinate Grid

<table>
<thead>
<tr>
<th>Group Name</th>
<th>GalGrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>—</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The Galaxy grid spans the Galactic disk. It is 100,000 light years on each side, and its midpoint is at the Galactic center. The grid lies in the plane of the Galaxy, which is about 50 light years “below” the Solar System. Labels appear every 10,000 light years and are in units of kilo-light years (kly).

All of the 3-D data sets lie within this grid except for a handful of globular clusters (GC) and some pulsars (Pul). The grid is complemented by the Milky Way image (Galaxy) and the Galactic halo (Halo), which diagrammatically highlight some of the Galaxy’s structural features.
The word “extragalactic” means everything outside the Milky Way, our home galaxy. Extragalactic space consists mainly of galaxies, the building blocks of the universe. Within the observable universe (that part of the universe visible to us), astronomers estimate there to be at least two trillion of them. Imagine, trillions galaxies with billions of stars each. If even a tiny fraction of those stars are host to planets, there would be trillions of planets in the universe.

The Digital Universe allows us to view these galaxies in three dimensions, revealing the weblike distribution of galaxies in our universe. In the Milky Way Atlas we adopted the notion of a solar neighborhood. In the Extragalactic Atlas we expand on that idea and discuss our Galactic neighborhood. Beyond the neighborhood, you may wonder whether we are located in an action-packed region of the universe or on the outskirts looking in. You may even contemplate some age-old questions: How big is the universe? Where are we in the universe? Is there other life in the universe? These and other questions will be addressed in this chapter. Some will be answered, while others remain beyond our reach.

We will start this chapter with a review of the objects found in extragalactic space and briefly discuss the origin and structure of the universe. We will then turn to a series of tutorials in “Extragalactic Atlas Tutorial,” where we discuss the issues specific to the Atlas. Finally, we present an overview of each data set in “Extragalactic Data Groups.”
3.1 Extragalactic Atlas Overview

The Extragalactic Atlas has fewer groups than the Milky Way Atlas, mostly because there is less variety of objects outside galaxies than inside them—galaxies and quasars make up much of the data available for the Extragalactic Atlas. In the table below, we list these data groups along with a brief description and a reference to a detailed description. The order of the groups is the same as one finds in the Digital Universe.

Table 3.1 – Extragalactic Atlas data groups with brief descriptions. Refer to the associated page number for a detailed description of each group.

<table>
<thead>
<tr>
<th>Group Name</th>
<th>See Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constel</td>
<td>139</td>
<td>Constellation connectivity lines</td>
</tr>
<tr>
<td>mwVis</td>
<td>140</td>
<td>Visible all-sky survey</td>
</tr>
<tr>
<td>RaDec</td>
<td>141</td>
<td>Equatorial (RA/Dec) coordinates</td>
</tr>
<tr>
<td>Halo</td>
<td>142</td>
<td>The Galactic halo</td>
</tr>
<tr>
<td>LocalDwarfs</td>
<td>147</td>
<td>Dwarf galaxies in the Local Group</td>
</tr>
<tr>
<td>LocalGroup</td>
<td>148</td>
<td>Extent of the Local Group</td>
</tr>
<tr>
<td>Tully</td>
<td>153</td>
<td>Tully Galaxy Catalog</td>
</tr>
<tr>
<td>Groups</td>
<td>??</td>
<td>Nearby galaxy groups (labels)</td>
</tr>
<tr>
<td>Clusters</td>
<td>??</td>
<td>Nearby galaxy clusters (labels)</td>
</tr>
<tr>
<td>Voids</td>
<td>??</td>
<td>Nearby voids (labels)</td>
</tr>
<tr>
<td>VirgoScl</td>
<td>??</td>
<td>Sphere marking the extent of the Virgo Supercluster</td>
</tr>
<tr>
<td>LaniakeaScl</td>
<td>??</td>
<td>Rough outline of the Laniakea Supercluster</td>
</tr>
<tr>
<td>Abell</td>
<td>162</td>
<td>Abell galaxy clusters & nearby superclusters</td>
</tr>
<tr>
<td>Superclusters</td>
<td>??</td>
<td>Galaxy superclusters (labels)</td>
</tr>
<tr>
<td>2MASS</td>
<td>156</td>
<td>2MASS Galaxy Catalog</td>
</tr>
<tr>
<td>6dF</td>
<td>??</td>
<td>The Six-Degree Field Galaxy Survey</td>
</tr>
<tr>
<td>2dF</td>
<td>164</td>
<td>The Two-Degree Field Galaxy Survey</td>
</tr>
<tr>
<td>Sloan</td>
<td>166</td>
<td>The Sloan Digital Sky Galaxy Survey</td>
</tr>
<tr>
<td>Quasars</td>
<td>??</td>
<td>Half Million Quasars catalog</td>
</tr>
<tr>
<td>CMB1965</td>
<td>??</td>
<td>Simulation of the CMB (cosmic microwave background) at its discovery</td>
</tr>
<tr>
<td>COBE1992</td>
<td>??</td>
<td>CMB from COBE mission, 1992</td>
</tr>
<tr>
<td>WMAP2003</td>
<td>??</td>
<td>WMAP CMB all-sky survey</td>
</tr>
</tbody>
</table>

Continued on next page.
In the following sections are a series of primers for those new to extragalactic astronomy. Addressing questions like, ‘What is a galaxy or quasar?’ or ‘What is large-scale structure?’, these sections will bring you up to speed on galaxies and cosmology.

If you know about galaxies, quasars, and cosmology, you can skip ahead to “Extragalactic Atlas Tutorial,” where we explore these groups in the context of the Atlas and the universe.

3.1.1 Galaxies

As we travel away from our Milky Way, objects in the Digital Universe become less familiar. This is partly because only three objects from the extragalactic realm are visible to the naked eye. In the Northern Hemisphere, the Andromeda Galaxy is visible as a blurry smudge in the night sky. In the Southern Hemisphere, the Large and Small Magellanic Clouds are prominent satellite galaxies visible as dim patches of light that resemble the band of the Milky Way.

Once telescopes were put to use scanning the skies, more faint smudges were seen. Even with a pair of binoculars we can see many extragalactic objects. But are they part of the Milky Way, or do they lie outside our Galaxy? We know the answer to that question today, but it was not until 1923, when Edwin Hubble estimated the distance to what was then called the Andromeda Nebula to be around 1 million light years away (less than half its actual distance). Astronomers had determined the dimensions of the Milky Way only a few years prior, and this distance was well outside the Galaxy. This put to rest the **cosmological debate** between those who believed the Milky Way was the entire universe...
and those who felt that there was a universe outside our Galaxy. Hence the Andromeda Nebula was renamed the Andromeda Galaxy and extragalactic astronomy was born.

Astronomers find that galaxies come in a wide variety of shapes, sizes, and colors, from giant, red ellipticals shaped like a watermelon to bluer spirals like our Milky Way. Galaxies that do not fit the elliptical or spiral mold are deemed irregular. These are typically smaller and have bluer stars than spirals or ellipticals. There are even dwarf spiral and dwarf elliptical galaxies. The distinction between objects is not always clear—some astronomers believe a few of the Milky Way’s globular clusters could be dwarf galaxies.

Despite this complexity, galaxies, including our Milky Way, have one thing in common: they are composed of stars. Some, like our Galaxy, have hundreds of billions of stars, while others have fewer, less diverse stellar populations. Some have active, ongoing star formation, and others are relatively inactive, dead galaxies.

The variety of galactic shapes and colors was categorized by Hubble in the early 1930s. Formulating three main branches, Hubble identified elliptical galaxies (E0–E5, S0, SB0), spiral galaxies (Sa–Sd) and barred spiral galaxies (SBa–SBd), along with the separate group of irregular galaxies (Irr). Each has a range of types within the main branch (noted in parentheses) that refer to the shape or other observed attributes of the galaxy. For example, an E0 galaxy is rounder, while an E5 galaxy is oblong. An Sa galaxy has a large bulge with tightly wound spiral arms, while an Sd galaxy has a small bulge with looser arms.

The Milky Way is among roughly three dozen galaxies called the Local Group. Most of the galaxies in this group are small dwarf or irregular galaxies, with the exception of three spirals: Andromeda, the Milky Way, and M33, a face-on spiral in Triangulum. Andromeda is about 2.5 million light-years away (that’s about 15,000,000,000,000,000,000 miles) and is the farthest object you can see without the use of binoculars or a telescope. Beyond these neighboring galaxies, it becomes difficult to see the individual stars that make up the galaxy, even with a telescope. Instead, astronomers see a smooth distribution of light, bright at the galactic core and dimming toward its edge.

Looking out to 100 million light years, we begin to see how these galaxies are constructed to form our universe. Galaxies do not appear to be haphazardly placed in the universe. They are organized into groups, clusters and superclusters. The Milky Way is in the Local Group, and the Local Group is part of the Virgo Supercluster, which is part of the Laniakea Supercluster. Galaxies also form in filaments, connecting galaxy clusters with strands of galaxies. Large voids occupy space like the inside of a
bubble, where space is relatively empty. The clusters, superclusters, and filaments of galaxies are collectively referred to as the “large-scale structure” of the universe, and astronomers have spent much of the past three decades coming to understand it.

3.1.2 Quasi-Stellar Objects (Quasars)

If you look at the Andromeda Galaxy tonight (assuming it’s visible), you are looking at a galaxy that is 2.5 million light years away. The light that reaches your eye left the galaxy 2.5 million years ago, so in a sense, you are looking at the galaxy when the universe was 2.5 million years younger. That’s a short time on cosmic scales, but what about the farthest objects we see that are billions of light years away? At that distance, even galaxies become too dim to see easily.

In 1960, astronomers discovered mysterious, starlike objects that emitted radio waves. Previously, radio light was observed from clouds of gas or supernova remnants in our Galaxy, but this was the first instance in which radio light emanated from what astronomers thought was a star. Everything about the object was strange; even its spectrum was unrecognizable. Two years later, a second similar object was discovered, and in 1963 astronomers realized that they were looking at the familiar hydrogen spectral lines. But the lines were shifted toward the red end of the spectrum by 16%, the largest shift to the red that had been observed to date.

This shift of light into the red is called redshift, and it is a measure of the speed with which an object is moving away from us. Like a train whistle that changes pitch as the train pulls away from us, light is Doppler-shifted to the red (or blue) end of the spectrum if the object is moving away from (or coming toward) us.

Forty years later, astronomers have deduced that these quasi-stellar objects, or quasars, are just tremendously bright, distant galaxies. The energy source responsible for this incredible luminosity is the heating and colliding of gas as it spirals into a supermassive black hole at the core. A quasar, then, is just a galaxy with a supermassive black hole at its core, generating immense amounts of energy hundreds of times more luminous than the Milky Way.

Just as we see a slightly earlier universe when we look to Andromeda, we see a much younger universe when we look at quasars, which lie billions of light years away. Could the active quasars represent an era in the earlier universe when all galaxies were more active and luminous? Astronomers are answering these questions as they study the origin of our universe.
3.1.3 The Cosmic Microwave Background

Most objects in the universe emit radiation that is proportional to the temperature of that object. This type of light is called blackbody radiation and is emitted by stars, galaxies, and the universe itself. Even humans emit a blackbody spectrum. If you put on some night-vision goggles (ones that are tuned to the wavelengths in which humans glow), you see a glow around a relatively warm person with respect to the cooler surroundings. At our body temperature, we radiate most of our energy in the infrared. Stars, galaxies, and the universe radiate much of their energy in different regions of the spectrum—see "Electromagnetic Spectrum" for more information.

In modern cosmology, the Big Bang Theory best describes the origins of the universe. Briefly, the theory suggests that origins of space and time, matter, and energy come from a time when the universe was extremely hot and dense. About 13.7 billion years ago, the universe exploded, forming space itself, which would later be populated with the galaxies we see today.

Very soon after the Big Bang, matter in the universe was so hot that it formed a plasma, a state in which atoms are separated into nuclei and free electrons, similar to the Sun’s interior. These free electrons prohibit the free flow of light in the universe. The universe was opaque to light in these early times, just as a fog prohibits light from traveling great distances and reduces visibility. Later, as the universe expanded and cooled, the electrons combined with the nuclei and formed hydrogen atoms. With few free electrons, light was now free to travel the universe—the fog had lifted. This transition took place about 380,000 years after the Big Bang, ushering in a new era in the universe.

The universe was then transparent to light as photons, which traveled freely across the universe, encountered few collisions that would absorb or scatter the light. If we could have seen it, the universe would have been about 3,000 Kelvin and would have glowed orange in visible light. In fact, the peak intensity of the universe at that time was around 1 micron (in the infrared). Since that time, the universe has expanded 1,000-fold and the light waves have expanded along with space. The light, then, appears redshifted as space itself expands. Today, the peak intensity of the universe is 1,000 times lower than it was then, so the wavelength is 1,000 times greater and is close to 1 millimeter (1 micron × 1,000 = 1 mm). This peak intensity corresponds to a gas temperature 1,000 times less, or 3 Kelvin (3,000 K ÷ 1,000 = 3 K). Light at 1 mm is in the microwave portion of the EM spectrum, and this is where we see the remnant light from the Big Bang, called the Cosmic Microwave Background radiation, or CMBR.

The CMBR pervades the universe. It is an imprint of the time of recombination in the universe, when
protons and electrons combined to form hydrogen, when light began to travel in space unimpeded. When we look at that light, we are looking back in time to that event, 380,000 years after the Big Bang. Before that time, the universe was opaque, like looking through a fog, so we will never see the Big Bang event itself. It's as if an everpresent cloud deck prevents us from seeing beyond it.

The CMBR, then, defines that part of the universe that we can see, what we call our *observable universe*. While the CMBR is everywhere in the universe, we can also think of it as our outer limit, that which we cannot see beyond.

We first came to understand the CMBR in the 1960s, when we observed a smooth distribution of light in all directions. Over the decades we build better telescopes to map this light, starting with COBE around 1992, then WMAP in 2003, and Planck in 2013 (learn more about these space telescopes in the "Microwave (WMAP) All-Sky Survey" section). Each mission returned a more detailed look at this light—the baby picture, if you will, of the early universe.

The resulting images show the minute variations in temperature that were present in the universe during that early era. These temperature variations are on the order of millionths of degrees around the average temperature of 2.725 Kelvin. In the next section, we will see just how important these minute fluctuations are in determining the structure and evolution of the universe.

3.1.4 Cosmological Structure Formation

The minute temperature fluctuations in the CMBR are directly responsible for the complex large-scale structure in today's universe. Scientists are still on the quest toward understanding how these small fluctuations evolve into the galaxy clusters and filaments we see today.

The temperature fluctuations in the CMBR may be thought of as density fluctuations in the early universe. These slight differences in density become amplified by gravity. Regions that are more dense, even by tiny amounts, will gradually collapse because of this excess gravity. This process, called gravitational instability, worked slowly over billions of years until galaxies formed. Those galaxies are now hundreds of times denser than the nearly empty space that surrounds them.

In addition to galaxy-sized objects, this process gave rise to clusters of galaxies and filamentary strands of galaxies. The structure of the universe is akin to human settlement in the world. We settle in towns of various sizes (a galaxy) and these towns often cluster around each other (a galaxy cluster). Connecting these towns are trails, rivers, and highways, along which smaller towns or groups of towns
3.1. EXTRAGALACTIC ATLAS OVERVIEW

are found (galaxy filaments).

While galaxy groups and clusters are gravitationally bound systems such that no galaxy can escape, superclusters have not yet settled into this state. In our analogy, this would be similar to the major cities in the Northeast United States. From Washington, D.C., to New York, one can travel from town to town almost without leaving an urban area. Interstate 95 connects them all as one area. But this urban region has not yet merged into one large megalopolis, just as a supercluster has not yet become gravitationally bound.

3.1.5 The Distance Scale

The universe has been expanding continuously, although not linearly, since the Big Bang, about 13.7 billion years ago. Its expansion gradually slowed because of the total gravity of matter in the universe. However, it was recently discovered that during the past few billion years the expansion has increased. This acceleration is attributed to something astronomers call dark energy. Dark energy is the mysterious force that is causing the expansion of the universe to speed up, overcoming the force of gravity.

In 1998, astronomers looked at Type Ia supernovae—exploding stars with predictable brightness—and found that supernovae observed in distant galaxies were dimmer than they should have been, meaning they are farther than predicted and the universe must be expanding faster than previously thought. Astronomers don’t know what dark energy is, but they do know some force is overcoming the gravitational pull within the universe, speeding up its rate of expansion.

For the Digital Universe, we use this information to compute distances to the galaxies and quasars in the Extragalactic Atlas. This provides you with the size and scale of the universe at the present epoch. This distance scheme sets the scale of the universe so that the quasars can be found past 20 billion light-years, while the CMBR is fixed to a sphere with a radius of 42 billion light years. Of course, these objects were much closer when their light left. If we plotted the universe according to where an object’s light left from, then the CMBR would be 13.7 billion light years away. However, we have opted to plot the universe at its current state, lending reality to the Atlas and one’s impression of the universe.
3.2 Extragalactic Atlas Tutorial

While the topics of astrophysics and cosmology are more complex in the extragalactic realm, the tutorials are less elaborate than those in the Milky Way Atlas. The homogeneity of the data at this scale, where we are limited to discussing galaxies as single objects, puts constraints on the types of data sets we have, as opposed to the zoo of objects one finds in the Milky Way.

Our tutorials will take you on a journey from the Galactic neighborhood out to the edge of our observable universe. Along the way, we will discuss scale and structure in the universe. Let’s start by exploring our Galactic backyard.

3.2.1 Tutorial: The Galactic Neighborhood

Goals: Explore the Milky Way’s nearest neighboring galaxies.

Before starting, turn on: LocalDwarfs, LocalGroup, Tully

You will be using: cb command

In our first tutorial, you will explore the Galactic neighborhood, discovering what lies outside our Galaxy and how these objects are arranged around us. Let's launch the Extragalactic Atlas and begin exploring.

Starting from Home Upon launching the Atlas, you are just outside the Milky Way looking back on our home Galaxy. The image you see beside the Home label is not our Milky Way but NGC 1232, a galaxy that is believed to resemble the Milky Way.

Barely detectable from this distance is the Point of Interest marker, the multicolored Cartesian axes that mark the location of the Sun and its planets within our Galaxy. Each half-width is 1,500 light years, about the distance to the Orion Nebula. You may have to fly in closer to see the axes clearly.

Begin by slowly orbiting this point where the Sun is located. You will notice some nearby galaxies with large labels and other, more distant galaxies that appear as multicolored points. Focus on those near the Milky Way.

Our Nearest Neighbor The nearest object to the Milky Way was discovered in 2003. The Canis Major Dwarf Galaxy is about 25,000 light years from the Sun. Another nearby companion is the
Sagittarius Dwarf Spheroidal Galaxy, known as SagDEG. It is represented by a point, but this belies the nature of this object.

You may have figured out that the object is called Sagittarius because it is seen in that constellation in the night sky. However, parts of this galaxy have been seen on both sides of the Galactic disk. So representing it with one point is really not too accurate.

The Sagittarius is a dwarf spheroidal galaxy that has been stretched and warped by our Milky Way. A dwarf spheroidal (dSph) galaxy appears as a smudge on the sky in even the largest telescopes. With a low star density, these galaxies often resemble star clusters rather than galaxies. The first dSph, Sculptor, was discovered in 1938 by Harlow Shapley.

Astronomers have come to realize that galaxies interact with one another more often than once thought. The Sagittarius dSph is in fact in the midst of an interaction. As it orbits our Milky Way, our Galaxy slowly rips the dwarf galaxy apart, stripping away streams of stars on each pass near the Milky Way’s disk.

The Magellanic Clouds The Magellanic Clouds (labeled LMC and SMC for Large and Small), are irregular galaxies. They do not fit into the spiral or elliptical classes observed by Hubble and published in The Realm of the Nebulae in 1936. Galaxies that were outside these two common types were called irregular. These are seen in the southern sky and appear as two isolated patches of faint light, similar in appearance to the light in the band of the Milky Way as seen from Earth.

They are actually small galaxies that contain star formation, globular clusters, and the famous supernova of 1987 (in the LMC). These two galaxies are likely in the process of colliding with our Milky Way. Because our Milky Way is far more massive than either of these galaxies, they have been ripped apart by our more dominant Galaxy. Astronomers may even see a trail of gas connecting the two galaxies.

All the galaxies huddled around the Milky Way are dwarf spheroidals except the Milky Way, which is a large spiral, and the LMC and SMC, which are irregulars. What lies beyond, though?

The Local Group Pull out farther so that you see a neighboring clump of green points. Turn on the LocalGroup. This smashed sphere roughly surrounds the galaxies of the Local Group. The Milky Way is near the center, and it now encompasses another grouping of galaxies. If you inspect this group, you will find it surrounds the Andromeda Galaxy (M31).
Similar to the Milky Way, Andromeda commands attention from its smaller, nearby companions. At 2.5 million light years, Andromeda is the largest galaxy we’ve seen thus far, just slightly larger than the Milky Way, and is the king of the hill among Local Group galaxies. It is the farthest object we can see with our unaided eye in a dark sky.

Like the Milky Way grouping, most of the galaxies around Andromeda are smaller dwarf spheroidals or dwarf ellipticals. One exception, M33, is the other spiral galaxy in the Local Group.

All the galaxies in the Local Group interact with one another under the group’s mutual gravity. Many of the nearby galaxies are interacting with the Milky Way, but Andromeda is also on a collision course. In 3 billion to 5 billion years, the two galaxies will collide. By then, our Sun will be in its late stages, expanding its envelope as it evolves into a white dwarf star.

3.2.2 Tutorial: The Local Universe

Goals: Understand the distribution of galaxies around the Local Group.

Before starting, turn on: LocalDwarfs, LocalGroup, Tully

You will be using: only= and thresh commands

If you’re continuing from the previous tutorial, go to the next paragraph. If you’re starting a new session, once the Extragalactic Atlas is up, pull away so that you can see all the data in the local galaxies (LocalDwarfs) and turn on the LocalGroup.

Exploring the entire data set, you may notice that most of the galaxies are in bunches about the size of the Local Group. These bunches typically have a large spiral or elliptical galaxy that attracts smaller galaxies. Let’s turn off the LocalDwarfs and the LocalGroup to see only the larger galaxies.

Galactic Census How many galaxies like the Milky Way are in the neighborhood? If you threshold the data according to type, you can see. A report on the Milky Way (place the mouse over the Milky Way and press the p key) reveals that it has a type of 5. According to the table in “,” this corresponds to an Sc spiral galaxy. Sc galaxies have small central bulges and loosely wound spiral arms. To see these galaxies in the data, type the command

only= type 5

Only a handful of galaxies remain near the Milky Way, and only two in the Local Group. Andromeda is
an Sb type, having a larger central bulge and a tighter arm structure (there are three Sb galaxies). To see all the spirals, type the command

\texttt{thresh type 1 8}

Still only 48 galaxies out of about 250, amounting to 19% of the data. In this way, you can perform a census on the data and visually explore the results in the \textit{Galaxy Morphology Codes} table.

The Brightest Galaxies Now let’s see the most luminous galaxies. Type the command

\texttt{thresh lum 0.5 6}

The \texttt{lum} data variable ranges from 0 to 5.7, with an average of 0.177. So with this statement, you are looking at the brightest galaxies. As you might expect, intrinsically bright galaxies are fewer in number than dimmer ones. Only 11 galaxies are bright enough to make this cut. They include the Milky Way, Andromeda, M33, M81, and the giant elliptical Centaurus A. Within a galaxy, the luminous stars are few and far between compared with the number of dimmer stars. Galaxies appear to follow this trend, as most of the nearby galaxies have low luminosities.

This picture of the nearby galaxies is the best science has to offer. Of course, there are many small, dimmer galaxies that we cannot see, even in our own backyard. Let’s look at other galaxy surveys that map galaxies out to greater distances.

3.2.3 Tutorial: Local Large-Scale Structure

Goals: Explore the local structure of the Universe.

Before starting, turn on: Galaxy, \texttt{LocalDwarfs}, \texttt{Tully}

You will be using: clipbox, polysize commands

In the previous sections, we described the Local Group of galaxies and the groups of galaxies that surround the Local Group. Now you will explore the structure of the local universe and see what lies beyond the surrounding galaxy groups.

Fly out of the local galaxies (\texttt{LocalDwarfs}) and turn on the Tully Galaxy Catalog (\texttt{Tully}). Tully’s multicolored points now occupy the rest of your view. Look only at the nearest galaxies by setting a clip box for these data. Run the command
This shows only the galaxies within 30 megaparsecs, about 100 light years. Now fly outside of this box so that you have a view of the entire data set. Brighten the galaxies if necessary.

The most dominant feature is the dense red cluster near the center. Fly to this galaxy cluster. This dense cluster could be considered “downtown” for our region of the universe, the center of our local supercluster. This is the Virgo Cluster.

The Virgo Cluster Sixteen of Messier’s galaxies are members of the Virgo Cluster, but this is a mere fraction of Virgo’s 2,000-plus galaxies. While it is about 50 million light-years away, the immense gravity of the cluster affects our Local Group galaxies and pulls other galaxies toward it.

Now turn off the points and labels and turn off the LocalDwarfs data group. If you fly right into the cluster, you may notice the faint glow of a few bright galaxies. In fact, the Tully Catalog has images placed on each point that represents the type of galaxy it is. These images are given the proper size and orientation, and the luminosity of the points is accurate. If you wish to see these images more prominently, increase their polysize. Because their slum value is fixed according to the galaxy’s size, you will have to use the polysize command to increase the size of the polygons. Choose polysize from the Slider Menu and adjust the slider to your liking.

Turn on the labels for the Tully data set. You may see labels like M31, which refer to the Messier Catalog, or NGC 4429, which refer to the New General Catalog. At the center of the Virgo Cluster is M87, a massive elliptical galaxy extending out more than half a million light-years. Its most peculiar feature is the long, knotty jet of material streaming out from its center.

Reduce the polysize back to normal (the Polysize Slider should be at its left-most setting) and turn the points back on. If you orbit the Milky Way with the Virgo Cluster in sight, you will notice a stream of light-blue galaxies extending up toward the Virgo Cluster. This is the Ursa Major filament that, in the 2-D sky, traces a path from the constellation Virgo up to Ursa Major.

The scientist who compiled these data sets into one consistent catalog, Brent Tully of the Institute for Astronomy in Hawaii, color-coded the galaxies according to a group membership. All galaxies belonging to dense clusters are red, while the galaxies in the Local Group and other nearby groups are green. Galaxies belonging to the Ursa Major Filament are light blue.

Many more clusters, filaments, and spurs are out there. Within this 100-light-year box are more than
6,800 galaxies. Let’s look at the entire data set by typing

```plaintext
cb off
```

removing the clip box and revealing the remaining 20,000 or so galaxies. We discuss this larger view of the universe in the next section.

3.2.4 Tutorial: Tully’s Nearby Galaxies

Goals: Discuss the structure of the nearby Universe.

Before starting, turn on: Galaxy, LocalDwarfs, Tully

You will be using: `see` command

Beyond those local features like the Virgo Cluster and the Ursa Major Filament, the Tully galaxies reveal the grand structure of the nearby universe. Fly to the outer edge of the data and orbit. From this view, you will see the major structural elements: clusters, filaments, and voids.

Before we begin, let’s first discuss the shape of these data. If you are orbiting far enough away, you will notice that the data appear to form a cube. In fact, they are confined to a cube. This is an artificial boundary that samples data within about 150 million light-years of the Milky Way.

Following from the previous tutorial, the colors are randomly assigned to a structural element, except for red, which is assigned to dense clusters. Within this cube are about 30,000 galaxies that cover a range of 300 million light-years. The Milky Way lies at the center of this observed data set.

Dense Clusters
As with many phenomena in nature, it is common to find galaxies in clusters. Some are small, loose agglomerations of galaxies, while others are massive, dense clusters of thousands of galaxies. Let’s examine the dense clusters by typing

```plaintext
see abell
```

at the Command Line. Now you should see the green points, which represent the LocalDwarfs data group, and the dense, red clusters of galaxies surrounding us. Virgo is the closest, at about 50 million light-years, but many more are present in this data set. Often these clusters do not have an accurate number of galaxies within them. The `see` command tells us that there are about 1,700 galaxies showing; however, we know the Virgo Cluster alone has more than 2,000 galaxies.
Filaments and Voids The other structures one sees in the nearby universe are the filaments and voids. Filaments are strings of galaxies that often connect larger clusters. We discussed the Ursa Major Filament in the previous tutorial, and now we see that Virgo and the Ursa Major Filament are part of a large network of clusters and connecting filaments.

Follow the Ursa Major Filament up to the Virgo Cluster and beyond, to another red cluster of galaxies. This is Abell 3526, located in the constellation Centaurus in our 2-D sky. Looser than Virgo, it seems to have a yellow line of galaxies extend over to it. These lead to the Antlia Cluster, at which point the yellow galaxies seem to take a right turn, where the filament connects up to another group of galaxies.

The yellow strands of galaxies define an edge, inside of which you see few galaxies until the aqua strand that seems to connect with the Virgo Cluster on the opposite side of Ursa Major. That large area where few galaxies are found is like the inside of a bubble. These regions of few large galaxies are called voids. The overall density of these regions is low relative to that of the galaxy-rich filaments. However, there are likely small dwarf galaxies that we cannot see in these regions.

The local universe seems to resemble a bubblelike form, where filaments of galaxies reside on the bubble surface and vast voids exist between them. These filaments connect large clusters of galaxies and make larger superclusters.

3.2.5 Tutorial: The 2MASS Galaxies

Goals: Investigate the structure of the nearby Universe using 2MASS; Learn to manipulate the enormous 2MASS data group.

Before starting, turn on: Galaxy, Tully

You will be using: 2MASS, Galac, see, thresh, color, and lum commands

Adding to our knowledge of the nearby universe, the Two Micron All Sky Survey (2MASS) has recently released the most complete picture of our cosmic surroundings. The data set consists of whopping 1.14 million galaxies within about 2 billion light-years. Let’s explore what this data group reveals about the structure of the universe.

Press the Home Button. You should be looking at the Milky Way with the Tully Virgo Cluster in the background. Turn off Tully and turn on the 2MASS group.

In the previous tutorial we introduced the elements of structure in the universe: galaxies, filaments,
and voids. With the 2MASS galaxy data, you see a more complete picture of the local universe than what you see in the Tully group. In fact, within the same volume, 2MASS contains 32% more galaxies than Tully.

From your current view, you should see the Virgo Cluster and strands of multi-colored points. Like Tully, those galaxies in dense clusters are given the color red, but, unlike Tully, color in 2MASS describes galaxy density rather than the randomly assigned colors Tully assigned to filaments. In 2MASS, red regions have the highest density, followed by orange, yellow, green, and aqua for the lowest density regions.

Fly backward (Home and Virgo should move away from you) until you see the Fornax Cluster, then orbit from that point. We’ve lost the Milky Way, so turn on the galactic coordinates sphere (Galac) to mark from where we came. You should see the large labels delineating the Virgo Cluster, Fornax Cluster, and you may possibly see the Centaurus and Hydra Clusters too. These are the nearest galaxy clusters to Earth.

Continue moving away from the Milky Way to see the entire data set, then adjust the brightness so the structure of the universe pops out—the red clusters, orange and yellow filaments, out to the faint blue galaxies. From this vantage point, let’s orbit around the Milky Way. (You will need to adjust the brightness of these data using the Slum Slider throughout this tutorial.)

Seeing the Forest Through the Trees First, let’s see the entire 2MASS data set so we know what this picture really looks like without filtering. Type

```
see all
```

and all 1,140,931 galaxies are displayed. Here you have a sense of just how dense the universe is. And, 2MASS only observed relatively bright galaxies. With this view, we no longer see the structure of the universe so easily. To return to our filtered view showing the large-scale structure, type

```
see lss
```

The Proximity Factor The lss selection is set using a data variable called the proximity factor. The 2MASS data come with two proximity factors, one for $R = 2\, \text{Mpc}$ and one for $R = 5\, \text{Mpc}$ (Mpc means megaparsecs with 1 Mpc = 1,000,000 pc and 1 pc = 3.26 light-years). These factors describe the density of space around a particular galaxy. Specifically, the $R = 2\, \text{Mpc}$ and $R = 5\, \text{Mpc}$ factors, called
prox2 and prox5, respectively, are high when there are many galaxies within the specified radius, and they are low when a galaxy is by itself in space.

The sheer number and density of galaxies in 2MASS demands that we use creative ways to view these data. By default, we use the lss selection set in the extragalactic.cf file with the command

\[\text{only=} \, \text{prox5} \, > \, 0.7 \]

This command tells Partiview to display only those galaxies with \(\text{prox5} \, > \, 0.7 \), resulting in only 15% of total number shown. Removing 85% of the data may not seem logical, but allows us to see structure.

Dense Clusters We have also defined a selection expression to display the dense clusters. Type the command

\[\text{see clusters} \]

and you will see the most dense regions of the nearby universe. This selection is defined using the \(\text{prox2} \) proximity factor in the command

\[\text{thresh prox2 1.3 3} \]

Increase the label size to see the names of these clusters. Type \(\text{see lss} \) to return to the normal view.

Color Schemes Type \(\text{color} \) and Partiview will report that colors are mapped to these galaxies using the \(\text{prox5} \) data variable. We have defined a color map file and several color schemes to highlight various aspects of these data.

First, and most obvious, we can view the galaxies at a constant color. Type

\[\text{color const} \]

and the galaxies will change to an aqua color. Sometimes, a constant color is good for seeing structure and puts all the galaxies on common ground. Of course, you can change this constant color to any red-green-blue values you like, for example, make the points gray by typing

\[\text{color const .5 .5 .5} \]

The galaxies may also be colored by distance using either

\[\text{color distMly} \]

or
3.2. EXTRAGALACTIC ATLAS TUTORIAL

`color redshift`

These set the innermost galaxies to aqua, then continue to green, yellow, orange, and red for the farthest galaxies.

Coloring by proximity is the best way to highlight structure in the data set. The default color for the data group is

`color prox5`

which, as mentioned above, sets the color of each point based on the $R = 5$ Mpc proximity factor. We have also defined a similar color map for the $prox2$ proximity factor

`color prox2`

Both of these show dense regions in red, then, as the density decreases, the colors change to orange, yellow, green, and aqua.

Luminosity Settings Normally, the 2MASS galaxies are given a constant luminosity, which is to say all points are given an equal intrinsic brightness. Of course, the actual brightness you see in Partiview is a function of the galaxy’s intrinsic brightness plus your distance from that galaxy.

If you want to highlight the structure a little, you can assign luminosity as a function of the proximity value, so higher values of $prox5$ will have a higher intrinsic luminosity. We have preset such a scenario which you can see by typing

`lum prox5`

After issuing this command, you may see the galaxies go dim or bright; just adjust the Slum Slider (remember, each `lum` setting has its own `slum` value). This `lum` setting pumps up the brightness just a tad on the clusters and filaments so that they stand out a little. Return to the default constant luminosity with

`lum const`

so that all galaxies have equal intrinsic brightness.

The 2MASS galaxies have given us a comprehensive look at the structure of the nearby universe. Next, we’ll explore galaxy clusters more closely and take a look at the nearest superclusters.
3.2.6 Tutorial: Galaxy Clusters and Superclusters

Goals: Observe the distribution of galaxy clusters and superclusters

Before starting, turn on: Galaxy, Tully

You will be using: Abell, see command, censize command, 1Gly

Let's begin this tutorial by looking at the entire Tully galaxy catalog. Fly outside the Tully data set so you can see the entire cube; you may need to brighten up the data set.

Now, type the command

```
see abell
```

to remove all the Tully galaxies except those inside dense clusters. These clusters are called Abell clusters after George Abell (1927–1983), who first cataloged them. Now you are left with a few dozen galaxy clusters that contain red-colored galaxies. Turn up the center size using the Censize Slider so that we know where the Milky Way is.

Turn on the Abell data group. Each point in this data group represents a cluster of galaxies. Some points may represent tens of galaxies, others may stand in for hundreds or even thousands of galaxies.

The first thing you should do is turn off the labels, you won't need them yet. Notice that those red clusters from Tully now are accompanied by a single point in Abell. Pull out to see the entire data set and turn on the 1Gly group for scale.

As you orbit the Milky Way, you will see immediately that, unlike Tully, the Abell clusters do not readily show large-scale structure. In fact, the galaxy clusters do not appear to cluster or form connecting filaments with one another. However, some of the Abell clusters are grouped, and these groupings are indicated by the various non-gray points and the labels (turn on the labels now).

The color of the points represents their membership in superclusters. A supercluster is a cluster of galaxy clusters. By now, you know that the Virgo Cluster is the nearest galaxy cluster to the Milky Way. It's about 60 million light-years away, 15 million light-years in diameter, and contains over 1,000 galaxies. A supercluster contains many galaxy clusters and is on the order of 300 million light-years across.

Those galaxy clusters with a color other than gray are considered to be members of a supercluster. Let's filter the data set to see these clusters on their own. Abell has a data variable attached to it called notable (that's "notable", not "no table"). If notable = 1, then the galaxy cluster is part of a supercluster. So, use the only = command to see these notable galaxy clusters by typing
3.2. EXTRAGALACTIC ATLAS TUTORIAL

only= notable 1

(note: there is no space between the word “only” and the equal sign.)

Now you see the largest superclusters around our Local Supercluster, which is also called the Virgo Supercluster. Most of these superclusters are named for the constellations they appear in. Our supercluster contains the mighty Virgo Cluster and many other smaller groups such as the Ursa Major Group, the M51 Group, the M81 Group, and our group, the Local Group, among others. Now you see similar systems in the universe, representing at least hundreds of thousands of galaxies.

Bring back all the Abell clusters by typing see all. The gray points, which are the majority of points, are not connected to any major supercluster, but remain as a nexus between the filaments and galaxies that must be present, but remain invisible in these data sets.

Next, we explore two partial galaxy surveys, the Two Degree Field Survey and the Sloan Digital Sky Survey.

3.2.7 Tutorial: Galaxy Surveys

Goals: Understand the extragalactic data from Earth’s perspective; begin exploring the 2dF and Sloan galaxies.

Before starting, turn on: galaxy, stars, constel, mwVis, galac

You will be using: 2dFgals, SloanGals, 1Gly, 20Gly

If you’re continuing from a previous tutorial, quit Partiview and restart the Extragalactic Atlas for a fresh start. Once the Atlas appears, turn off the local group. You should be left with the Point of Interest marker. Fly toward it until it disappears. Now you should see nothing.

We’re first going to look at these surveys from Earth. Turn on the stars, constel, mwVis, and the galac groups so that you see the stars, constellations, visible all-sky image, and the constellations for reference.

Viewing Galaxy Surveys from Earth Turn on the 2dF Galaxy Redshift Survey (2dFgals). As you pan around the sky, you will see one strip of yellow toward the northern Galactic latitudes and another strip surrounded by circular patches in the south Galactic polar region. Each of these patches of galaxies shows the actual telescope footprint on the sky. If you look at each closely, you will see they are two degrees wide and contain many galaxies.
Now turn on the SloanGals group to see the Sloan Digital Sky Survey galaxies. You will see more coverage on the sky, particularly in the northern Galactic hemisphere. These are two major galaxy surveys that astronomers have completed. As you can see, they cover only a portion of the entire sky, often in narrow strips.

Now turn off the Sloan galaxies so that you’re left with only the 2dF survey. Position yourself so you’re looking toward the random fields (circular patches) in the south Galactic pole. Begin flying away and, as you do, notice the random fields appear to be pulled in toward the Milky Way. You may also notice that the stars, Milky Way all-sky, constellations, and coordinates all lie on a fixed sphere. Because the distance to the stars would be extremely small on this scale (megaparsecs), we placed the stars and related data groups on a fixed sphere with a radius of 1 Mpc (1 million parsecs).

Flying Away from Earth As you pull back, you’ll be out of the data set in no time. Once you see most of the galaxies, stop and orbit.

From out here, you can see the large-scale structure of the universe: dense clusters of galaxies connected by strands of galaxies, and areas where there are fewer galaxies, called voids. Turn on the 1-billion-light-year grid, 1Gly, and the 20-billion-light-year grid, 20Gly, to see the scale of these galaxies. The random pointings now appear as pencil beams that extend out billions of light-years from the Milky Way.

The bow-tie shape of these data indicates the patches of sky that were surveyed. Imagine if the entire sky were surveyed, you would see similar data surrounding the Milky Way in a spherical distribution. The Sloan Digital Sky Survey’s original goals were to do just that. Let’s turn the Sloan back on and see them in 3-D.

You may want to adjust their brightness using the Slum Slider. The Sloan galaxies also show the large-scale structure, that pattern of clusters, filaments, and voids. This is the structure of the local universe. Remember, for a galaxy 3 billion light-years away, the light traveled for about 3 billion years to reach the lens of the observing telescope. Does the evolution of the universe affect this view? How far do you have to look before the large-scale structure you see currently is nonexistent or is in an unrecognizable phase?

We will continue exploring these questions in subsequent tutorials. For this scale, we are still looking at objects generally in the same cosmic era. Yes, when we look at a galaxy 3 billion light-years away, we’re seeing it as it was 3 billion years ago. However, this is a relatively short time, cosmically. Next we’ll
discuss quasars, objects that we see at greater distances.

3.2.8 Tutorial: Quasar Surveys

Goals: Explore the characteristics of the quasar surveys.

Before starting, turn on: 2dFgals

You will be using: 2dFQSOs, SloanQSOs, 20Gly, alpha command

As we look farther out into space, we are looking further back in time. Quasars are the farthest objects we see. The nearest quasar is 1 billion light-years, but most are more than 10 billion light-years away. Reflecting a greater abundance at an earlier time in the universe, quasars provide evidence that we live in an evolving universe where objects change over time.

What Is a Quasar? Quasars are violent, extremely luminous galaxies. There are many types of active galaxies (Seyfert galaxies and radio galaxies for two), but quasars trump them all in power and brightness. The light we see from a quasar is from synchrotron radiation and occurs from electrons moving close to the speed of light in a strong magnetic field.

Quasar Distribution Let’s look at some quasars in the Atlas. Begin from a vantage point where you see all the 2dF galaxies. If you’re continuing from the previous tutorial, then you should be set if group 2dF is on.

As we mentioned in the previous tutorial, the 2dF galaxies extend to about 3 billion light-years and the bow-tie shape of these data reflects those parts of the sky that were observed by the telescope.

Now turn on the 2dF Survey quasars (2dFQSOs). As you can see, they appear like a natural extension to the galaxy survey. Nearby, there seems to be less density and the number of quasars increases as the distance increases toward their average distance of 13.4 billion light-years. By about 15 billion to 20 billion light-years, the density of quasars begins to fall off. This fall-off is due to the limiting magnitude of the telescopes—their cut-off is set by brightness, typically around 20th magnitude—and objects dimmer than this will not be detected.

Turn off the 2dF quasars and turn on the Sloan Digital Sky Survey quasars (SloanQSOs). If you turn on the 20-billion-light-year grid, 20Gly, you can see that these quasars have the same properties as those in 2dF. If you want to see the grid throughout the data, you can make it completely opaque by
increasing its \(\alpha \) value to 1. We like the grids semitransparent, though, so they don’t dominate the scene.

While quasars are the farthest objects we can see, there is light from an earlier epoch that pervades the universe, called the cosmic microwave background. We will discuss this light in the next tutorial.

3.2.9 **Tutorial: Edge of the Observable Universe**

Goals: View the cosmic microwave background radiation in context with the quasars.

Before starting, turn on: `galaxy`, `local`, `SloanQSOs`, `20Gly`

You will be using: `wmap`

The Cosmic Microwave Background Radiation Astronomers believe that the universe was born from the Big Bang, when space expanded from an extremely hot and dense condition. You might imagine that this event was spectacular in its energy and luminosity output. If we think quasars are bright, the creation of the universe must have been incredible. Given that, wouldn’t you expect to see something from this energetic event?

In fact, astronomers do see the light from just after the Big Bang. At that time, the universe was very hot, so hot that atoms could not form. Instead, there were free electrons and protons and neutrons that made up the primordial universe. Light could not travel very far before it collided with a free electron. Thus we say the universe was opaque, as radiation and matter were constantly interacting. As the universe expanded, the temperature of the plasma dropped and, after 379,000 years, the universe was cool enough to allow electrons and protons to combine, forming hydrogen atoms. Once this occurred, the light from the Big Bang was free to traverse the universe, since the free electrons were captured by atomic nuclei.

Bring up the Extragalactic Atlas and load the `galaxy`, `local`, `SloanQSOs`, and the `20Gly` data groups. Now fly away from the Milky Way but remain within the quasar data, somewhere around 15 billion light-years away.

The WMAP All-Sky Survey From this perspective, turn on the `wmap` group and begin orbiting the Milky Way [see “Microwave (WMAP) All-Sky Survey” for information on the WMAP image]. The image is
a false-color mapping of the tiny temperature fluctuations in the microwave light: red for the warmer regions, blue for the cooler regions. These minute differences represent temperature fluctuations in the primordial universe. While the universe was remarkably uniform in temperature at 379,000 years old, the seeds of structure were present. These seeds would one day grow to become the galaxy clusters and large-scale structure we see in the nearby universe.

Astronomers do not yet understand what happened in the universe between that point and now. How structure formed remains a topic at the forefront of science.

Our Observable Universe This is the entire observable universe for Earthlings. We have seen in these tutorials that the local universe consists of galaxies, galaxy clusters, and superclusters of galaxies. These elements are the wave crests in the large-scale structure of the universe. Between these galaxy-rich strands are voids, where we see a lack of bright objects. Deeper into space, we look to earlier epochs in the universe where we see quasars, early forms of galaxies with active cores perhaps from the continual interaction between galaxies in the early universe. Beyond, we see the light left over from the Big Bang itself, this cosmic microwave background.
3.3 Extragalactic Data Groups

In this section you’ll find a dossier on each data group in the Extragalactic Atlas. For data groups that also appear in the Milky Way Atlas, we will refer you to those previous sections rather than reiterate them here.

3.3.1 Constellations

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Constel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>—</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott, Carter Emmart (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Census</td>
<td>88 constellations and labels</td>
</tr>
</tbody>
</table>

In the Extragalactic Atlas, we provide the constellation lines along with the stars for night-sky context. They, too, are fixed on the 1 Mpc sphere and have a single color (unlike the Milky Way Atlas). For a full description of these lines and their meaning, please refer to “Constellation Connectivity Lines” in the Milky Way Atlas.
3.3.2 Visible All-Sky Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>mwVis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Axel Mellinger (Universitaet Potsdam)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Ryan Wyatt (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Wavelength</td>
<td>400 nm − 700 nm</td>
</tr>
<tr>
<td>Frequency</td>
<td>750 THz − 430 THz</td>
</tr>
</tbody>
</table>

The visible Milky Way shows the Milky Way Galaxy from Earth’s perspective, our night-sky view. This all-sky image shows the gas and dust visible to us from our own Galaxy.

Because we cover this image in greater detail in the Milky Way Atlas, we will forgo discussing it here. Instead, we will refer you to “Visible All-sky Survey” for a thorough description of the image.

Like the objects in the Milky Way Atlas, the all-sky images in the Extragalactic Atlas are placed at a fixed distance. Of course, the Extragalactic Atlas’s megaparsec scale is much larger than that of the Milky Way Atlas’s parsec scale. You may recall in the Milky Way Atlas that the visible all-sky image is placed at an arbitrary distance of 1,000 parsecs (or 3,260 light years). In the Extragalactic Atlas, we place the all-sky image on a sphere with a radius of 1.5 Mpc, or 5 million light years. This distance corresponds with that of the Constel group, and the RaDec coordinate sphere.
3.3.3 Equatorial Coordinates

<table>
<thead>
<tr>
<th>Group Name</th>
<th>RaDec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>—</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The **equatorial coordinates** trace Earth’s system of latitude and longitude onto the night sky. The brighter blue line is the celestial equator and lies directly above Earth’s equator. A detailed description of the equatorial coordinates can be found in “Equatorial Coordinates Sphere” in the Milky Way Atlas.

From outside Earth’s view, the coordinates are rendered as a sphere. The radius of this sphere is 1.5 megaparsec, coincident with the constellations and the visible Milky Way all-sky image.
3.3.4 Milky Way Halo

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Halo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
</tbody>
</table>

The Milky Way is surrounded by a large, spherical halo. The most prominent objects in this halo are the globular clusters (GC), the bright, compact star clusters of hundreds of thousands of stars. The halo is also filled with dimmer, cooler stars that formed around the time the Galaxy was forming. We include the halo here to see its scale among our neighboring galaxies. It is 41,000 parsecs, or about 134,000 light years, in radius. For more information about our Galactic halo, see “The Galactic Halo” in the Milky Way Atlas chapter.
3.3.5 Tully Galaxy Catalog

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Tully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Tully 8,000 km/s Galaxy Catalog (Brent Tully, U Hawaii)</td>
</tr>
<tr>
<td></td>
<td>The Galaxy Catalog (Zsolt Frei and James E. Gunn)</td>
</tr>
<tr>
<td></td>
<td>National Optical Astronomical Observatory</td>
</tr>
<tr>
<td>Prepared by</td>
<td>R. Brent Tully (U Hawaii)</td>
</tr>
<tr>
<td></td>
<td>Stuart Levy (NCSA/U Illinois)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Census</td>
<td>30,160 galaxies</td>
</tr>
</tbody>
</table>

These nearby galaxies represent the best picture we have of the local universe. These 30,000-plus objects were compiled by Brent Tully at the University of Hawaii. Known for discovering the Tully-Fisher relation, a correlation between the luminosity and the rotation period of a spiral galaxy, Brent dedicates his time toward understanding the structure of the universe.

Data Variables The Tully galaxies have data variables that describe their brightness, size, and orientation. We list these variables in the following table.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>distMly</td>
<td>Distance from the Milky Way</td>
<td>Mpc</td>
</tr>
<tr>
<td>1</td>
<td>prox5Mpc</td>
<td>Number of galaxies within 5 Mpc</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>type</td>
<td>Galaxy Morphological Type</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>diamkpc</td>
<td>Galaxy diameter</td>
<td>kpc</td>
</tr>
<tr>
<td>4</td>
<td>Mblueneg</td>
<td>Negative absolute B magnitude</td>
<td>mag</td>
</tr>
<tr>
<td>5</td>
<td>lum</td>
<td>Galaxy luminosity scaled to M_{blueneg}</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>texture</td>
<td>Texture number</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>cloud</td>
<td>The cloud (grouping) number</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>pgcID</td>
<td>Principal Galaxies Catalogue number</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>hicnt</td>
<td>References for a grouping catalog</td>
<td>—</td>
</tr>
<tr>
<td>10–15</td>
<td>orientation</td>
<td>Unit vectors for the polygon orientation</td>
<td>Mpc</td>
</tr>
</tbody>
</table>

The galaxy morphological type variable is an integer that reflects the type of galaxy classified first by Edwin Hubble (1889–1953) in the 1930s. The classification scheme has four main groups: elliptical galaxies (E), barred spiral galaxies (SB), unbarred spiral galaxies (S), and irregular galaxies (Irr). The integers assigned to these types are decoded in the table below. In this numbering system, barred and
unbarred spiral galaxies (S & SB) are merged, since data on bars are often inconclusive. For an overview of galaxy classification, see “Galaxies” in the extragalactic overview.

<table>
<thead>
<tr>
<th>Number</th>
<th>Hubble Type</th>
<th>Galaxy Type</th>
<th>Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>E</td>
<td>Elliptical</td>
<td>20</td>
</tr>
<tr>
<td>-3</td>
<td>E/SO</td>
<td>Elliptical/Lenticular(^1)</td>
<td>3</td>
</tr>
<tr>
<td>-2</td>
<td>SO</td>
<td>Lenticular</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>SO/a</td>
<td>Lenticular/Spiral</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>Sa</td>
<td>Spiral</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Sab</td>
<td>Spiral</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Sb</td>
<td>Spiral</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Sbc</td>
<td>Spiral</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Sc</td>
<td>Spiral</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Scd</td>
<td>Spiral</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Sd</td>
<td>Spiral</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Sdm</td>
<td>Spiral</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Sm</td>
<td>Spiral/irregular</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Irr</td>
<td>Irregular</td>
<td>117</td>
</tr>
<tr>
<td>12</td>
<td>S</td>
<td>Spiral/irregular(^2)</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>P</td>
<td>Peculiar</td>
<td>0</td>
</tr>
</tbody>
</table>

This table also describes the population of galaxies in the data set. Most of them are irregular galaxies, with SO/a spirals (mostly dwarfs) are the second-highest population in the data set. Most of the galaxies around us are small, but is this true elsewhere in the Universe? Turns out the answer is probably yes, and we happen to live in a large galaxy.

Other data variables describe the galaxy’s size, brightness, and orientation. \(\text{diam}_{\text{kpc}}\) is the diameter of the galaxy in kiloparsecs (the Milky Way is 100,000 light-years in diameter, which equals 30 kpc). \(\text{M}_\text{blue}_{\text{neg}}\) is the negative value of the intrinsic B magnitude of the galaxy. The luminosity is a linear scaling of the intrinsic B magnitude, with \(\text{lum} = 1\) corresponding to \(\text{M}_\text{blue}_{\text{neg}} = 19\).

In this data set, a galaxy is often a member of a group, a cluster, a cloud, and a supercluster. Many groups and clusters of galaxies form a cloud, and many clouds form a supercluster. For example, the Milky Way belongs to the Local Group, which is in the Virgo Supercluster, which is part of the Pisces-Cetus Supercluster Complex.

The \text{pgc} variable is the Principal Galaxies Catalogue number, and the \text{hicnt} is a cross-referencing

\(^1\)classification uncertain
number for a galaxy grouping catalog. Following that, the next six columns beginning with \texttt{orient0} specify the orientation of the galaxy.

Structure Within the Local Galaxies Each of these green points is a Galactic neighbor. We have defined three boxes (see table below) that highlight the galaxies in this data group.

<table>
<thead>
<tr>
<th>Box Number</th>
<th>Dimensions (Mpc)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0, 0, 0 0.85, 0.85, 0.85</td>
<td>Local Group box</td>
</tr>
<tr>
<td>2</td>
<td>0, 0, 0 3.75, 3.75, 3.75</td>
<td>Box around the entire data set</td>
</tr>
<tr>
<td>Clipbox</td>
<td>0, 0, 0 0.18, 0.18, 0.18</td>
<td>Milky Way group of galaxies</td>
</tr>
</tbody>
</table>

The smallest box encloses those galaxies around the Milky Way. This is a clip box and is activated with the command \texttt{cb on} in the Partiview Command Line. Within this box are 12 galaxies, our nearest neighbors.

To see those galaxies that live around the block, turn off the clip box (\texttt{cb off}) and turn on the normal boxes by pressing the Box Toggle Button. Inside this dark yellow box are the three dozen or so Local Group galaxies. We discussed this group in the Local Group section (\texttt{lgrp}) and in “Beyond the Milky Way” in the Milky Way Atlas, but now we have a greater appreciation for the context of these galaxies among the other nearby galaxies in the local Universe.

Within the Local Group, the two major players are the Andromeda Galaxy (M31) and the Milky Way. These are large spiral galaxies that have a bevy of smaller galactic companions clustered around them. Another, less concentrated grouping is found near the galaxy NGC 3109, on the outskirts of the group.

Membership in the Local Group is based on two criteria: the mutual gravitational attraction of the galaxies and their distance from us. While the former seems sensible and the latter somewhat arbitrary, this is the historical evolution behind selecting the galaxies of the Local Group.

Finally, we have the adjacent neighborhoods that, in this data set, surround the Local Group. Upon inspection, you may see that these galaxies tend to clump into groups that rival the Local Group in size and number. Most of these groups have dominant galaxies that tend to influence their evolution, just as Andromeda and the Milky Way influence the smaller dwarf galaxies in the Local Group. These include NGC 5128, or Centaurus A, a large (500-kpc-diameter), peculiar elliptical galaxy in Centaurus with a large, irregular dust lane and strong radio-emitting gas lobes emanating from its nucleus (not shown in
3.3. EXTRAGALACTIC DATA GROUPS

the Atlas). These peculiar features are likely the result of a galaxy collision some 500 million years ago. Also, M81, the large spiral in Ursa Major, dominates the Ursa Major Group, and NGC 253, a large spiral near the South Galactic Pole, is the largest member of the Sculptor Group.

Some of these adjacent groups around the Local Group appear more concentrated than others, but they all tend to have similar properties. Dominated by one or a few large galaxies, the majority of galaxies tend to be small dwarf and irregular galaxies.
3.3.6 Local Group Dwarfs

<table>
<thead>
<tr>
<th>Group Name</th>
<th>LocalDwarfs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>—</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Census</td>
<td>65 dwarf galaxies; the remaining 9 galaxies that make up the Local Group are in Tully.</td>
</tr>
</tbody>
</table>

The LocalDwarfs galaxies group contains all the smaller galaxies in the Local Group. The main galaxies of the Local Group—the Milky Way, Andromeda galaxy, M33, and a few others—are included in the Tully dataset, so these two datasets act in concert with one another.

Dwarf galaxies are small, satellite galaxies composed of hundreds of millions to several billion stars. They are typically under the gravitational influence of a larger galaxy, and are often shredded by them at some point over their lifetime.

The Local Group is composed of these galaxies, plus those in Tully. The data appear in two main batches: the Milky Way and its satellite dwarfs, and Andromeda and its dwarfs. Because these are so small, we cannot see them clearly beyond the Local Group, but it’s safe to assume many galaxies have their own companions.
3.3.7 Local Group Boundary

<table>
<thead>
<tr>
<th>Group Name</th>
<th>LocalGroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>—</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Brian Abbott (AMNH)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Census</td>
<td>1 wire-frame sphere</td>
</tr>
</tbody>
</table>

The Local Group is contained within an oblate sphere that outlines the rough size of the Local Group of galaxies. The sphere contains the approximately 75 galaxies, including the Milky Way, Andromeda, and all of their dwarf galaxies.

The long axis is about 5 million light years, and roughly indicates the boundary of the Local Group.
3.3.8

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Reference</th>
<th>Prepared by</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Labels</th>
<th>Files</th>
<th>Dependencies</th>
<th>Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>g8local.speck, g8local.label</td>
<td>none</td>
<td>247 galaxies</td>
</tr>
</tbody>
</table>

The galaxies in the data group represent the best picture we have of the galactic neighborhood. These 247 objects compose a collection of galaxies that is more complete than other galaxy surveys, which typically show only larger and brighter galaxies.

These galaxies were compiled by Brent Tully at the University of Hawaii. Known for discovering the Tully-Fisher relation, a correlation between the luminosity and the rotation period of a spiral galaxy, Brent dedicates his time toward understanding the structure of the Universe.

Data Variables The nearby galaxies have data variables that describe their brightness, size, and orientation. We list these variables in the following table.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>type</td>
<td>Galaxy Morphological Type</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>diamkpc</td>
<td>Galaxy diameter</td>
<td>kpc</td>
</tr>
<tr>
<td>2</td>
<td>Mblueneg</td>
<td>Negative absolute B magnitude</td>
<td>mag</td>
</tr>
<tr>
<td>3</td>
<td>lum</td>
<td>Galaxy luminosity scaled to Mblueneg</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>txno</td>
<td>Texture number</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>cloud</td>
<td>The cloud (grouping) number</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>pgc</td>
<td>Principal Galaxies Catalogue number</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>hicnt</td>
<td>References for a grouping catalog</td>
<td>—</td>
</tr>
<tr>
<td>8–13</td>
<td>orient0</td>
<td>Unit vectors for the polygon orientation</td>
<td>Mpc</td>
</tr>
</tbody>
</table>

The galaxy morphological type variable is an integer that reflects the type of galaxy classified first by Edwin Hubble (1889–1953) in the 1930s. The classification scheme has four main groups: elliptical galaxies (E), barred spiral galaxies (SB), unbarred spiral galaxies (S), and irregular galaxies (Irr). The
integers assigned to these types are decoded in the table below. In this numbering system, barred and unbarred spiral galaxies (S & SB) are merged, since data on bars are often inconclusive. For an overview of galaxy classification, see “Galaxies” in the extragalactic overview.

<table>
<thead>
<tr>
<th>Number</th>
<th>Hubble Type</th>
<th>Galaxy Type</th>
<th>Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>E</td>
<td>Elliptical</td>
<td>20</td>
</tr>
<tr>
<td>-3</td>
<td>E/SO</td>
<td>Elliptical/Lenticular</td>
<td>3</td>
</tr>
<tr>
<td>-2</td>
<td>SO</td>
<td>Lenticular</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>SO/a</td>
<td>Lenticular/Spiral</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>Sa</td>
<td>Spiral</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Sab</td>
<td>Spiral</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Sb</td>
<td>Spiral</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Sbc</td>
<td>Spiral</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Sc</td>
<td>Spiral</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Scd</td>
<td>Spiral</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Sd</td>
<td>Spiral</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Sdm</td>
<td>Spiral</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Sm</td>
<td>Spiral/irregular</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Irr</td>
<td>Irregular</td>
<td>117</td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>Spiral/irregular</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>P</td>
<td>Peculiar</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>P</td>
<td>Peculiar</td>
<td>0</td>
</tr>
</tbody>
</table>

This table also describes the population of galaxies in the data set. Most of them are irregular galaxies, with SO/a spirals (mostly dwarfs) are the second-highest population in the data set. Most of the galaxies around us are small, but is this true elsewhere in the Universe? Turns out the answer is probably yes, and we happen to live in a large galaxy.

Other data variables describe the galaxy’s size, brightness, and orientation. diamkpc is the diameter of the galaxy in kiloparsecs (the Milky Way is 100,000 light-years in diameter, which equals 30 kpc). Mblue_neg is the negative value of the intrinsic B magnitude of the galaxy. The luminosity is a linear scaling of the intrinsic B magnitude, with lum = 1 corresponding to Mblue_neg = 19.

In this data set, a galaxy is often a member of a group, a cluster, a cloud, and a supercluster. Many groups and clusters of galaxies form a cloud, and many clouds form a supercluster. For example, the Milky Way belongs to the Local Group, which is in the Virgo Supercluster, which is part of the Pisces-Cetus Supercluster Complex.

\(^2\text{classification uncertain}\)
The \textit{pgc} variable is the \textbf{Principal Galaxies Catalogue} number, and the \textit{hicnt} is a cross-referencing number for a galaxy grouping catalog. Following that, the next six columns beginning with \textit{orient0} specify the orientation of the galaxy.

\textbf{Structure Within the Local Galaxies} Each of these green points is a Galactic neighbor. We have defined three boxes (see table below) that highlight the galaxies in this data group.

<table>
<thead>
<tr>
<th>Box Number</th>
<th>Dimensions (Mpc) (xcen,ycen,zcen xlen,ylen,zlen)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0, 0, 0 0.85, 0.85, 0.85</td>
<td>Local Group box</td>
</tr>
<tr>
<td>2</td>
<td>0, 0, 0 3.75, 3.75, 3.75</td>
<td>Box around the entire data set</td>
</tr>
<tr>
<td>Clipbox</td>
<td>0, 0, 0 0.18, 0.18, 0.18</td>
<td>Milky Way group of galaxies</td>
</tr>
</tbody>
</table>

The smallest box encloses those galaxies around the Milky Way. This is a clip box and is activated with the command \texttt{cb on} in the Partiview Command Line. Within this box are 12 galaxies, our nearest neighbors.

To see those galaxies that live around the block, turn off the clip box (\texttt{cb off}) and turn on the normal boxes by pressing the Box Toggle Button. Inside this dark yellow box are the three dozen or so Local Group galaxies. We discussed this group in the Local Group section (\texttt{lgrp}) and in “Beyond the Milky Way” in the Milky Way Atlas, but now we have a greater appreciation for the context of these galaxies among the other nearby galaxies in the local Universe.

Within the Local Group, the two major players are the \textbf{Andromeda Galaxy} (M31) and the Milky Way. These are large spiral galaxies that have a bevy of smaller galactic companions clustered around them. Another, less concentrated grouping is found near the galaxy NGC 3109, on the outskirts of the group.

Membership in the Local Group is based on two criteria: the mutual gravitational attraction of the galaxies and their distance from us. While the former seems sensible and the latter somewhat arbitrary, this is the historical evolution behind selecting the galaxies of the Local Group.

Finally, we have the adjacent neighborhoods that, in this data set, surround the Local Group. Upon inspection, you may see that these galaxies tend to clump into groups that rival the Local Group in size and number. Most of these groups have dominant galaxies that tend to influence their evolution, just as Andromeda and the Milky Way influence the smaller dwarf galaxies in the Local Group. These include NGC 5128, or \textbf{Centaurus A}, a large (500-kpc-diameter), peculiar elliptical galaxy in Centaurus with a
large, irregular dust lane and strong radio-emitting gas lobes emanating from its nucleus (not shown in the Atlas). These peculiar features are likely the result of a galaxy collision some 500 million years ago. Also, M81, the large spiral in Ursa Major, dominates the Ursa Major Group, and NGC 253, a large spiral near the South Galactic Pole, is the largest member of the Sculptor Group.

Some of these adjacent groups around the Local Group appear more concentrated than others, but they all tend to have similar properties. Dominated by one or a few large galaxies, the majority of galaxies tend to be small dwarf and irregular galaxies.
3. THE EXTRAGALACTIC ATLAS

3.3.9 Tully Galaxy Catalog

Group Name	Tully 8,000 km/s Galaxy Catalog (Brent Tully, U Hawaii)
Reference	The Galaxy Catalog (Zsolt Frei and James E. Gunn)
Prepared by	National Optical Astronomical Observatory
Labels	Yes
Census	30,160 galaxies

The Tully Galaxy Catalog is an extension of the Local Galaxies (local) data group. While has only about 250 galaxies, the full Atlas has about 30,000 galaxies. The two remain separate because the data group is more complete than this larger data set and includes smaller, dimmer galaxies.

Many details of the Tully galaxies are described in “.” Please see that section for a description of the data variables for this data group.

Size and Scale of the Data This data group differs from the local galaxies in that it provides coverage over a larger volume of the Universe. The 28,364 points are distributed over about 2.7×10^{25} cubic light-years. The data are distributed in a cube that is about 300 million light-years per side. Because this is all observed data, the Milky Way, of course, lies at the center of this cube. The cube shape of the entire data group is completely arbitrary and has no physical significance.

Colors The colors of the data points are based on galaxy membership to various structures. All galaxies that belong to dense clusters are colored red. Beyond this, galaxies that belong to a grouping, whether it is a smaller cluster or a strand of galaxies, get one color to signify their membership. For example, the line of galaxies that extend up from the Virgo Cluster (according to our 2-D view in the sky) belong to the Ursa Major Filament and are all colored blue. The galaxies in each structural part of the Universe have received a color based on what element they belong to.

Galactic Census The following table is equivalent to the census table in the previous section, except we have updated the numbers for the larger data set. Please see an explanation of this table in the previous section.
Galaxy Morphonology Codes and Census

<table>
<thead>
<tr>
<th>Number</th>
<th>Hubble Type</th>
<th>Galaxy Type</th>
<th>Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>E</td>
<td>Elliptical</td>
<td>990</td>
</tr>
<tr>
<td>-3</td>
<td>E/SO</td>
<td>Elliptical/Lenticular</td>
<td>652</td>
</tr>
<tr>
<td>-2</td>
<td>SO</td>
<td>Lenticular</td>
<td>1439</td>
</tr>
<tr>
<td>0</td>
<td>SO/a</td>
<td>Lenticular/Spiral</td>
<td>9132</td>
</tr>
<tr>
<td>1</td>
<td>Sa</td>
<td>Spiral</td>
<td>1314</td>
</tr>
<tr>
<td>2</td>
<td>Sab</td>
<td>Spiral</td>
<td>1629</td>
</tr>
<tr>
<td>3</td>
<td>Sb</td>
<td>Spiral</td>
<td>2046</td>
</tr>
<tr>
<td>4</td>
<td>Sbc</td>
<td>Spiral</td>
<td>2332</td>
</tr>
<tr>
<td>5</td>
<td>Sc</td>
<td>Spiral</td>
<td>3323</td>
</tr>
<tr>
<td>6</td>
<td>Scd</td>
<td>Spiral</td>
<td>2284</td>
</tr>
<tr>
<td>7</td>
<td>Sd</td>
<td>Spiral</td>
<td>581</td>
</tr>
<tr>
<td>8</td>
<td>Sdm</td>
<td>Spiral</td>
<td>498</td>
</tr>
<tr>
<td>9</td>
<td>Sm</td>
<td>Spiral/irregular</td>
<td>311</td>
</tr>
<tr>
<td>10</td>
<td>Irr</td>
<td>Irregular</td>
<td>481</td>
</tr>
<tr>
<td>12</td>
<td>S</td>
<td>Spiral/irregular5</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>P</td>
<td>Peculiar</td>
<td>0</td>
</tr>
</tbody>
</table>

The census reveals the differences between the local data group and this data group. In the data group, most of the galaxies are irregular, while here irregulars make up fewer than 2% of the total. The bulk of the galaxies in this catalog are spirals. This is just the opposite of the galaxies, where most of the galaxies are irregular or dwarf galaxies. We cannot see dwarf galaxies out this far, so their numbers are artificially reduced by this observational limitation. The observational bias leans toward the big, bright galaxies, so spirals dominate the population in this data group.

Galaxy Images Each galaxy in this data group is represented by a point and a polygon. These polygons are properly sized and have an orientation matching that of the galaxy. Placed upon each polygon is an image representing its galaxy type (spiral, elliptical, etc.). Most of these come from *The Galaxy Catalog*.

A handful of images for nearby galaxies were taken from the National Optical Astronomy Observatory (NOAO). These include the Large and Small Magellanic Clouds (NOAO/AURA/NSF), the Andromeda Galaxy or M31 (Bill Schoening, Vanessa Harvey/REU program/NOAO/AURA/NSF), M33 [T. A. Rector (NRAO/AUI/NSF and NOAO/AURA/NSF) and M. Hanna (NOAO/AURA/NSF)], M81 (N. A.

5classification uncertain
Sharp/NOAO/AURA/NSF), M101 (George Jacoby, Bruce Bohannan, Mark Hanna/NOAO/AURA/NSF), M51 (Todd Boroson/NOAO/AURA/NSF), and Centaurus A (Eric Peng, Herzberg Institute of Astrophysics and NOAO/AURA/NSF).

Each of these images has been altered from its original state. These images were taken from Earth on some of the world’s largest telescopes, so foreground stars from our own Galaxy appear in each image. We are representing galaxies in extragalactic space, where stars would not appear as large, bright objects. So, we have removed the stars from each image from NOAO.

For a description of the cluster, filament, and void structure in these data, we direct you to the associated tutorials: “Local Large-Scale Structure” and “Tully’s Nearby Galaxies.”
3.3. EXTRAGALACTIC DATA GROUPS

3.3.10 2MASS Galaxy Catalog

<table>
<thead>
<tr>
<th>Group Name</th>
<th>2MASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>The Two Micron All Sky Survey</td>
</tr>
<tr>
<td></td>
<td>The Two Micron All Sky Survey Galaxy Redshift Catalog v13</td>
</tr>
<tr>
<td></td>
<td>Tom Jarrett (CalTech)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Tom Jarrett (CalTech)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Files</td>
<td>various</td>
</tr>
<tr>
<td>Dependencies</td>
<td>2mass.cmap</td>
</tr>
<tr>
<td>Census</td>
<td>1,140,931 galaxies</td>
</tr>
</tbody>
</table>

The Two Micron All-Sky Survey, abbreviated 2MASS and pronounced “two-mass,” is an image survey of the entire sky. Between 1997 and 2001, two automated 1.3-meter telescopes, one on Mount Hopkins, Arizona, and another on Cerro Tololo, Chile, scanned the sky in three near-infrared wavelengths resulting in over four million images and information on over 470 million objects. However, a survey of images does not yield distances to the objects identified within them.

To determine distances, we need the object’s redshift. (The definition of redshift and its relationship to distance is discussed in “Redshift and Distance.”) The 2MASS Galaxy Redshift Catalog assembles redshift data from many surveys, including 2MASS, ZCAT, Sloan, 2dF, 6dF, and others, and includes redshifts derived from photometric (i.e., brightness) and velocity data.

Combining the 2MASS galaxies and these various redshift surveys results in the most complete all-sky census of galaxies, including more galaxies in the “zone of obscuration,” where the bright optical band of the Milky Way blocks our view of the galaxies beyond. The resulting catalog contains an impressive 1.14 million galaxies that surround the Milky Way.

The impact of 2MASS has been tremendous for astronomy and astrophysics. Not only has the survey enabled this galaxy data set, giving us one of the best pictures of the local Universe, but scientists are finding many new objects, including L-type and T-type dwarf stars (included in the Dwarfs data group).

Why Use Infrared Telescopes? Astronomers use infrared detectors to reveal parts of the Universe that remain hidden in visible light. These regions are embedded in dense clouds of gas and dust which glow brightly in visible light. Infrared light passes through these dense clouds, allowing astronomers to see objects within them. For example, we see “deeper” toward the Galactic center in
infrared light, and when we look at the Orion Nebula in the infrared we see stars within the gas that we cannot see in visible light. Furthermore, Earth’s atmosphere is relatively transparent to infrared light at the wavelengths used in the survey \((J = 1.25 \text{ microns}, H = 1.65 \text{ microns}, \text{ and } K = 2.17 \text{ microns})\), so the light passes freely to Earth’s surface.

Data Variables The sheer density and coverage of the 2MASS presents a challenge when trying to see the structure within the data set. For this reason, we have defined several variables to hone your view of these galaxies.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>distMly</td>
<td>Distance</td>
<td>light-years (millions)</td>
</tr>
<tr>
<td>1</td>
<td>redshift</td>
<td>Redshift</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>zcatalog</td>
<td>Redshift source catalog</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>prox2</td>
<td>Proximity factor for (R = 2 \text{ Mpc})</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>prox5</td>
<td>Proximity factor for (R = 5 \text{ Mpc})</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>rahrs</td>
<td>Right Ascension</td>
<td>hours</td>
</tr>
<tr>
<td>6</td>
<td>decdeg</td>
<td>Declination</td>
<td>degrees</td>
</tr>
</tbody>
</table>

The most useful of these data variables are the proximity factors, \(\text{prox2}\) and \(\text{prox5}\). These numbers describe the likelihood that within a given volume surrounding a particular galaxy there exists another galaxy. The more galaxies in that volume, the higher the proximity factor. For example, \(\text{prox2}\) is the proximity factor for a spherical volume with a radius of \(R = 2 \text{ million parsecs} (or 6.52 \text{ million light-years})\). Similarly, \(\text{prox5}\) is the factor corresponding to a radius \(R = 5 \text{ million parsecs} (or 16.3 \text{ million light-years})\). Low values of the proximity factors indicate that the galaxy in question is not near other galaxies—that it’s out on its own. The higher the proximity values, the more concentrated the area around the galaxy will be. And, since the radius is smaller for \(\text{prox2}\), these concentrations will be more dense than those for \(\text{prox5}\).

By default, only those 2MASS galaxies with \(\text{prox5} < 0.7\) are displayed, removing 85% of the galaxies. You might think this is crazy, but it’s the only way to see the forest through the trees. If you type **see all** while 2MASS is active, you will see the full-up catalog of 1.14 million galaxies. Seeing the density of galaxies surrounding us is certainly impressive, but the vast number of galaxies prevent us from seeing any structure.

Two data variables describe the distance to each galaxy. One variable, called \(\text{distMly}\), is the
distance expressed in millions of light-years and ranges from about 2 million to 3,000 million (or 3 billion) light-years. For example, type `thresh distMly 0 100` to see the 3,478 galaxies within 100 million light-years of the Sun. The Virgo Cluster is the most prominent cluster in view, while the smaller Fornax Cluster lies opposite the Milky Way from Virgo.

Similarly, because redshift is directly related to distance, we can use it to produce subsets of data. For example, `thresh redshift 0 0.007` is approximately equal to the 100-million-light-year threshold we set above.

To parse these data on yet another parameter, the 2MASS galaxies include a redshift source catalog identifier called `zcatalog`. This data variable is an integer that describes the redshift source, allowing you to cull the component catalogs from the larger data set. Naturally, we have set selection expressions for these redshift sources (see below).

<table>
<thead>
<tr>
<th>Redshift Source Catalog ID</th>
<th>Catalog Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tully’s Nearby Galaxies</td>
</tr>
<tr>
<td>2</td>
<td>Six-degree Field Galaxy Survey</td>
</tr>
<tr>
<td>3</td>
<td>Sloan Digital Sky Survey</td>
</tr>
<tr>
<td>4</td>
<td>NASA/IPAC Extragalactic Database (NED)</td>
</tr>
<tr>
<td>5</td>
<td>ZCAT, which includes the CfA Redshift Survey</td>
</tr>
<tr>
<td>6</td>
<td>Lyon-Meudon Extragalactic Database (LEDA)</td>
</tr>
<tr>
<td>7</td>
<td>Two-degree Field Galaxy Survey</td>
</tr>
<tr>
<td>9</td>
<td>Photometric redshift</td>
</tr>
</tbody>
</table>

Using these data variables will help you see the structure of our local Universe through the overwhelming density of galaxies in this data set. Use these parameters creatively and in combination with one another to show any slice of galaxies you would like to see.

Selection Expressions We have predefined several selection expressions in the `extragalactic.cf` file that make it easier to view the 2MASS galaxies. We summarize these in the table below.
3. THE EXTRAGALACTIC ATLAS

<table>
<thead>
<tr>
<th>Alias</th>
<th>Partview Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lss</td>
<td>only= prox5 > 0.7</td>
<td>The default setting showing large-scale structure and removing many of the isolated galaxies</td>
</tr>
<tr>
<td>d100</td>
<td>thresh distMly 0 100</td>
<td>All galaxies within 100 million light-years</td>
</tr>
<tr>
<td>d372</td>
<td>thresh distMly 0 372</td>
<td>All galaxies within 372 million light-years, roughly the same volume as Tully</td>
</tr>
<tr>
<td>zbest</td>
<td>only= redshift < 0.06 only- prox5 < 0.7</td>
<td>Galaxies with lower redshift uncertainty</td>
</tr>
<tr>
<td>clusters</td>
<td>thresh prox2 1.3 3</td>
<td>Dense clusters of galaxies</td>
</tr>
<tr>
<td>tully</td>
<td>only= zcatalog 1</td>
<td>Redshifts from Tully’s Nearby Galaxy Catalog</td>
</tr>
<tr>
<td>6df</td>
<td>only= zcatalog 2</td>
<td>Redshifts from the Six-degree Field Survey</td>
</tr>
<tr>
<td>ssds</td>
<td>only= zcatalog 3</td>
<td>Redshifts from the Sloan Digital Sky Survey</td>
</tr>
<tr>
<td>ned</td>
<td>only= zcatalog 4</td>
<td>Redshifts from NED</td>
</tr>
<tr>
<td>zcat</td>
<td>only= zcatalog 5</td>
<td>Redshifts from ZCAT</td>
</tr>
<tr>
<td>leda</td>
<td>only= zcatalog 6</td>
<td>Redshifts from LEDA</td>
</tr>
<tr>
<td>2df</td>
<td>only= zcatalog 7</td>
<td>Redshifts from Two-degree Field Survey</td>
</tr>
<tr>
<td>photoz</td>
<td>only= zcatalog 9</td>
<td>Photometric redshift used</td>
</tr>
<tr>
<td>nophotoz</td>
<td>thresh zcatalog 1 8</td>
<td>Removes all galaxies with photometric redshifts</td>
</tr>
</tbody>
</table>

The lss expression is the default setting when you launch the Extragalactic Atlas. It selects all galaxies with an \(R = 5 \text{ Mpc} \) proximity factor greater than 0.7. This leaves only 15% of the total 2MASS galaxies, but allows you to see the large-scale structure of galaxy clusters and filaments.

The d100 and d372 settings allow you to see all galaxies within 100 million light-years and 372 million light-years, respectively. We chose 372 million light-years because it represents the same volume as the Tully data group.

To see galaxies with relatively good redshift data, use the zbest expression. This displays galaxies with high redshift confidence. As the distance increases, accurate redshifts become more difficult to measure, so the uncertainty in distance increases. However, redshifts less than 0.06 are known with higher certainty.

The clusters expression culls out clusters of galaxies, the most dense regions around the Milky Way.

The remaining expressions show portions of the data set based on the redshift source. Perhaps the most useful of these is the nophotoz expression, which removes all the galaxies that have a photometric redshift. Spectroscopic redshifts are more accurate than a photometric estimation, so these
3.3. EXTRAGALACTIC DATA GROUPS

galaxies’ distances are more accurate.

Luminosity Settings In addition to the selection expressions, we have supplied several luminosity settings for the data group that enable you to emphasize aspects of the massive data set.

In Partiview, it is possible to define many luminosity settings using the `lum` command, each with its own scaling factor defined by the `slum` command. We typically use a constant luminosity for 2MASS (`lum const 1`), and this is the setting in effect when you launch the Digital Universe. However, to emphasize the structure of these data, we also supply a luminosity setting according to the $R = 5$ proximity factor, `prox5 (lum prox5 0 1)`. This sets the luminosity of the points such that the regions of higher density appear brighter. You can toggle between these two states by typing `lum prox5` and `lum const`. Use the Slum Slider to set separate `slum` factors for each.

Color Settings Color is a helpful tool in visualizing data and plays an important role with these 1-million-plus galaxies. In the `extragalactic.cf` file, we’ve defined five color settings which are set according to the 2MASS color map file, `2mass.cmap`.

<table>
<thead>
<tr>
<th>Color by</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>const</code></td>
<td>All galaxies receive one color (doesn’t use the color map file).</td>
</tr>
<tr>
<td><code>redshift</code></td>
<td>Color according to redshift. Aqua at low redshifts, then green, yellow, orange, and red at high redshifts.</td>
</tr>
<tr>
<td><code>distMly</code></td>
<td>Similar to redshift, but colors mapped over the <code>distMly</code> range.</td>
</tr>
<tr>
<td><code>prox2</code></td>
<td>Colors mapped over the <code>prox2</code> data range.</td>
</tr>
<tr>
<td><code>prox5</code></td>
<td>Colors mapped over the <code>prox5</code> data range. This is the default.</td>
</tr>
</tbody>
</table>

The default color map uses the `prox5` data variable. The low values receive an aqua color, while increasingly dense regions receive green, yellow, orange, and red for the most dense regions. Experiment with the other color settings, or try setting some of your own.

Radial Stretching You may notice some radial stretching in the 2MASS galaxies, short lines of galaxies that appear to point toward Earth. In fact, this is common in all the galaxy surveys, including 2dFgals and SloanGals. To emphasize this effect, you can display all the 2MASS galaxies then filter the galaxies by the `prox2` factor

```
see all thresh prox2 0.5 3
```
The data appear to form lines that point toward Earth. Astronomers call this radial stretching effect a “finger of god.” Throughout history, astronomers have shown just how ordinary we Earthlings are by disproving our position in the center of the Solar System, the Galaxy, and even the Universe. When, in the 1980s and 1990s long lines of galaxies pointing radially toward Earth were discovered, we had reason to believe we were special again. However, it was quickly apparent that this was an artificial result.

Astronomers realized these radial effects are a product of velocity dispersions that differ from the overall expansion of the Universe. Within a cluster of galaxies, an individual galaxy could be heading toward Earth (blueshifted), away from Earth (redshifted), or there may be no radial component at all in its motion (no shift in the light). These dispersions cause the distances of galaxies within clusters to be stretched radially. In fact, the mapping of large-scale structure is stymied by this effect—the more concentrated the area, the more uncertainty there will be in the galaxy’s distance.

For a more realistic view of the Universe, this stretching must be removed. For large clusters in 2MASS, the stretching has been removed, resulting in a statistically accurate representation of a galaxy cluster. In the mid-range densities, the radial stretching remains—you will see many long lines of galaxies that point toward Earth. As the density decreases, the stretching will not be as prominent.

Let’s go back to our normal view for 2MASS by typing `see lss`.

Labels The 2MASS data group has two sets of labels. One set is a local label, showing the names of individual galaxies when you fly close to them (with the default label size). Another set of labels in the `2MASSclusters.label` file, identify galaxy clusters and structure. These labels are 20 times larger than the individual galaxies, so they will be visible from greater distances. Adjust the Labelsize and Labelminpixels Sliders to suit your label taste.
3.3.11 Abell Galaxy Clusters and Nearby Superclusters

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Abell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>R. Brent Tully (U Hawaii) Stuart Levy (NCSA/U Illinois)</td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
</tr>
<tr>
<td>Files</td>
<td>abell.speck, abell.label</td>
</tr>
<tr>
<td>Dependencies</td>
<td>abell.cmap</td>
</tr>
<tr>
<td>Census</td>
<td>2,246 galaxy clusters</td>
</tr>
</tbody>
</table>

The Abell group is composed of all the nearby galaxy clusters. The northern hemisphere survey, published in 1958, was compiled by George Abell (1927–1983) from the Palomar Sky Survey plates. A subsequent southern hemisphere catalog was published posthumously in 1989. Further data analysis was conducted by R. Brent Tully of the Institute for Astronomy, to determine the distance and three-dimensional distribution of these galaxy clusters.

Each point in this data set represents a cluster of tens to hundreds (possibly even thousands) of galaxies. You will notice some points are assigned colors while most are gray. The data set also has an arbitrary cut-off, resulting in the rectangular shape of the data set.

Clusters of Clusters Galaxies group together to form the large-scale structure of the Universe. Dense clusters of galaxies are connected by filaments, or strands, of galaxies. Between, vast voids resemble the inside of a bubble and are occupied by less dense material. Beyond these structures, astronomers have found larger-scale constructs called “superclusters.”

Larger than a cluster of galaxies, superclusters are made from many galaxy clusters. In the Abell data, the non-gray colors represent these superclusters. These mammoth objects are on the order of 300 million light-years in diameter. Compare that to the size of one cluster, Virgo, which is only 15 million light-years across, or our Galaxy, which is a scant 100,000 light-years across.

The Shapley concentration, named after the American astronomer Harlow Shapley (1885–1972), is one of the closest rich superclusters to us. Six hundred million light-years distant, the supercluster is composed of about 25 rich galaxy clusters, amounting to 10,000 Milky Ways.
Notable Clusters One way to see the superclusters is to filter Abell by the `notable` index. Each Abell cluster has a notable index that is either 1, meaning the cluster is attached to a large supercluster, or zero, meaning it is relatively isolated. Type `see supercl`, and 313 galaxy clusters in about two dozen superclusters will remain. Type `see all` to return all the galaxy clusters to view.

Labels Two sets of labels describe the Abell data group, the supercluster labels and the individual cluster labels. The handful of large, white labels describe supercluster positions. Approach a particular Abell cluster and you will see a blue-green label pop on, revealing its Abell catalog number. Of course, you can adjust the appearance and visibility of these labels using the `labelsize` and `labelminpixels` commands.
3.3.12 Two-degree Field Galaxy Survey

The Two-degree Field (2dF) Survey is a project designed to map portions of the extragalactic Universe. Mapping the Universe’s structure provides astronomers with constraints on its formation and evolution.

The 2dF instrument is mounted on the 3.9-meter (12.8-foot) Anglo-Australian Telescope (AAT), located 450 km (280 miles) northwest of Sydney. The telescope has a 2-degree field of view on the sky, enabling large parts of the sky to be observed at one time. For each pointing of the telescope, the instrument can acquire up to 400 spectra simultaneously via optical fibers that feed into two spectrographs. The spectrographs see light that is between 350 nm and 800 nm, spanning the visible spectrum.

The survey was conducted from the extended APM Galaxy Survey. This catalog was derived from the Southern Sky Survey, taken by the UK Schmidt Telescope and scanned by the Automated Plate Measuring (APM) Machine. This extended catalog contains more than 5 million galaxies that span the north and south Galactic hemispheres.

The 2dF survey has three main components: the north Galactic pole strip, the south Galactic pole strip, and the random fields that surround the south Galactic pole strip. The galaxy survey is composed of about 230,000 galaxies with brightness and redshift measurements. For information on converting redshift to distance, please see “Redshift and Distance.”
Data Variables The 2dF galaxy survey has the following data variables available (note that these are the same for the 2dF quasars and the Sloan galaxies and quasars):

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>redshift</td>
<td>Object’s redshift</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>distMpc</td>
<td>Distance</td>
<td>Mpc</td>
</tr>
<tr>
<td>2</td>
<td>distGly</td>
<td>Distance</td>
<td>billions of light-years</td>
</tr>
<tr>
<td>3</td>
<td>Tlookback</td>
<td>The Lookback Time</td>
<td>Gyr</td>
</tr>
<tr>
<td>4</td>
<td>prox5Mpc</td>
<td>Number of galaxies within 5 Mpc</td>
<td>galaxies</td>
</tr>
</tbody>
</table>

These data, and all extragalactic galaxy surveys, are colored by density. For each galaxy, we determine how many galaxies are within 5 Mpc (16 million light-years). If that number is high, in other words, the galaxy is surrounded by many other galaxies, we color it red (most dense), orange, or yellow. Galaxies that are sparsely distributed are blue or green.

The redshift ranges from 0.0016 to 3.5, with a mean value of 0.118. The look-back time, how long ago an object emitted the light, should not exceed the age of the Universe, which is currently 13.7 billion years. The look-back time ranges from 0.02 billion to 11.7 billion years, meaning the oldest galaxies in these data date back 11.7 billion years. To see them, you must increase the brightness of the data set.

Following these, we have two distance variables, one in megaparsecs and the other in billions of light-years. You can change the color of these data based on distance by typing \texttt{color distGly}, which will evoke a statement already defined in the \texttt{extragalactic.cf} file. To change back to coloring by density, type \texttt{color prox5Mpc}.

If you turn on the \texttt{20Gly} group, you will see that most galaxies extend to about 2.5 billion light-years before the data become sparse. As mentioned in “The Distance Scale,” the distance for each galaxy reflects the present location of that galaxy, not where its light left from. For example, a galaxy around 3 billion light-years in the Atlas has a look-back time of 2.7 billion years; the galaxy was 2.7 billion light-years away when the light we observe today left the galaxy. This discrepancy comes about from the expansion of the Universe; the farther an object is from us, the larger this discrepancy becomes.

Out to about 2 billion light-years, the 2dF galaxies show the large-scale structure of the Universe. Even in these thin slices, the pattern of clusters, connecting filaments, and voids is present in these data. Imagine if the 2dF were to look at the entire sky, we would be surrounded by galaxies that form this pattern. This is the goal of the Sloan Digital Sky Survey (SDSS), and we will discuss its latest results next.
3.3.13 Sloan Digital Sky Galaxy Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Sloan Digital Sky Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Sloan Digital Sky Survey</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Eric Gawiser (Rutgers University)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Files</td>
<td>sdssgals.speck</td>
</tr>
<tr>
<td>Dependencies</td>
<td>none</td>
</tr>
<tr>
<td>Census</td>
<td>696,417 galaxies</td>
</tr>
</tbody>
</table>

The Sloan Digital Sky Survey (SDSS) is an ambitious project to map one-quarter of the sky. The survey will measure the position and brightness of more than 100 million objects and measure redshift (which yields a distance) to 1 million galaxies and quasars.

The telescope is located at Apache Point Observatory in south-central New Mexico (US) and began operating in June 1998. It is 2.5 meters (8.2 feet) in diameter and was designed specifically for this mapping project. The telescope takes images of the sky as well as spectra for individual objects. Imaging the sky is not too difficult compared with taking individual spectra, so the spectral catalog lags behind the imaging project.

The spectral range for the SDSS is 380 nm – 920 nm, stretching from the blue end of the visible spectrum to the red and barely into the infrared.

The data variables (see p. 165) associated with the SDSS galaxies are the same as those in the 2dF galaxies, except for the data variable called release, which describes the data release (see below). The SDSS galaxies are also similar to the 2dF data in that they form triangular wedges, revealing those parts of the sky observed by the telescope. If the entire sky were covered, you would see a spherical distribution of galaxies surrounding the Milky Way (like the 2MASS galaxies). Right now, we see only a few select slices from that sphere.

These galaxies appear to extend beyond the 2dF survey to distances that exceed 5 billion light-years. However, the weblike structure of clusters, filaments, and voids seems to fade by about 2 billion light-years. Beyond this distance, the completeness of the survey drops so that only the intrinsically bright galaxies are visible. This is easily seen if you set a threshold on the distance.

Look at the nearby galaxies using the command

```bash
thresh distMly 0 2500
```

showing galaxies out to 2.5 billion light-years. Now view the distant galaxies using the command
thresh distMly 3000 8000

Now you're looking at galaxies between 3 billion and 8 billion light-years, and the lack of structure is easy to see.

Seeing Structure In order to see any structure among the almost 700,000 galaxies, it helps to remove some of the galaxies from your view. To accomplish this, you can filter these data by their position in the sky (right ascension and declination), or by data release. For example, you can single out a “slice” of galaxies by selecting data between a narrow declination range, like:

thresh decdeg -5 5

As always, type see all to return all the galaxies to your view.

You may also follow the evolution of the Sloan Digital Sky Survey by selecting galaxies based on their data release. The first data were released in 2003, followed by five more releases through 2007. Because data release 1 and 2 were released jointly, we include them both in data release 2. Try using the thresh command and see how the SDSS evolved over the past few years. For example: try typing thresh release 2 2 to see release 1 and 2. Or type thresh release 6 6 to see the latest release.

Is this the farthest out we can see? Continue to the next data group to find out.
3.3.14 Two-degree Field Quasar Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The 2dF QSO Redshift Survey (Colless+ 2003)</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Eric Gawiser (Rutgers University), Brian Abbott (AMNH/Hayden)</td>
</tr>
<tr>
<td>Labels</td>
<td>No</td>
</tr>
<tr>
<td>Files</td>
<td>2dfqsos.speck</td>
</tr>
<tr>
<td>Dependencies</td>
<td>none</td>
</tr>
<tr>
<td>Census</td>
<td>22,431 quasars</td>
</tr>
</tbody>
</table>

If you are familiar with the Two-degree Field (2dF) survey, you may know that the 2dF also surveyed quasars, the farthest objects in the Universe. For details on the 2dF survey and instrument, please see “Two-degree Field Galaxy Survey.” The data variables associated with the 2dF quasars are the same as those in the 2dfgals.

Discovering Quasars Radio astronomy was born in 1931, when Karl Jansky of Bell Telephone Laboratories discovered that the Milky Way was radiating its own radio waves. In the years following World War II, hundreds of radio observations were recorded and cataloged in the Third Cambridge (3C) Catalog of radio sources. Many of these sources were identified to have a nebulous optical counterpart, like the Crab Nebula or the nearby galaxy Centaurus A.

However, in 1960, astronomers detected the first object that radiated radio light but appeared like a faint blue star rather than a nebulous cloud. This object, 3C 48, was mysterious because its spectra revealed lines that were unfamiliar. Astronomers thought they had discovered a new class of radio-emitting stars.

About two years later, this object was joined by another, 3C 273. Astronomers observed the same spectral features in this object, and in 1963, Maarten Schmidt of Palomar Observatory discovered that these were not new lines but were the familiar hydrogen lines shifted by 16% into the radio spectrum. This redshift (0.16) was the largest that had been observed to date and meant that the object was receding from us at about 16% the speed of light.

With such large redshifts, these objects were clearly not stars in our Galaxy. Furthermore, their enormous distances implied that they must be incredibly bright. In fact, they are the brightest objects in our Universe, comparable in luminosity to 20 trillion Suns or 1,000 Milky Way Galaxies. But what are these mysterious objects?
What Are Quasars? Quasars have been observed in all regions of the electromagnetic spectrum, but they emit most of their light in the infrared. They resemble active galaxies but have much higher luminosities. An active galaxy has a supermassive black hole at its center that gobbles up gas from a surrounding accretion disk. This process emits high-energy light that can be seen to great distances. Quasars are simply more intense versions of these active galaxies. The central black hole consumes more material over the same period.

Quasars are our baby pictures of the “normal” galaxies we see nearby. The look-back times for the 2dF quasars range from 1 billion to more than 11 billion years. Consider a quasar with an 11 billion-year look-back time. The light we see from that quasar left 11 billion years ago, when the Universe was very young. By now, the quasar has no doubt evolved into something else, perhaps a calmer, “normal” galaxy.

Astronomers believe that quasars are snapshots from the formation stage of galaxies. As a galaxy comes together, it is very active and unsettled. This is the quasar stage. As the object evolves, its central black hole consumes material left over from the galaxy’s formation and that rate of consumption slows over time. This is the active, or radio, galaxy phase. Once there is a lack of material for the black hole to feed on, the galaxy becomes less active and enters its normal stage, like our Milky Way. The Milky Way still has a massive black hole at its center, but its rate of consumption has slowed to the point where the energy emitted is much less than that of an active galaxy.
3.3.15 Sloan Digital Sky Quasar Survey

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Reference</th>
<th>Prepared by</th>
<th>Labels</th>
<th>Files</th>
<th>Dependencies</th>
<th>Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sloan Digital Sky Quasar Survey</td>
<td>Sloan Digital Sky Survey</td>
<td>Eric Gawiser (Rutgers University)</td>
<td>No</td>
<td>sdssqsos.speck</td>
<td>none</td>
<td>90,509 quasars</td>
</tr>
</tbody>
</table>

The Sloan Quasar Survey contains over 90,000 quasars that extend beyond the SloanGals. This makes sense, as they come from the same observations that were made to compile the Sloan galaxy catalog.

The SDSS quasars have the same data variables listed in the section describing the 2dFgals group, with the exception of the release variable describing the data release (see “Sloan Digital Sky Galaxy Survey”). Of course, the range of these variables is dramatically different from that of the SDSS galaxies. Generally, the objects are dimmer from our perspective; their average distance is 12.5 billion light-years, compared with 1.8 billion light-years for the galaxies. And the look-back time, the length of time the light has been traveling, is 8 billion years on average, while it is only 1.7 billion years for the galaxies.

These differences are not at all surprising given that quasars are thought to represent galaxies in their early stages of evolution. If we could travel instantaneously to a Sloan quasar that is 10 billion light-years from Earth (and violate all physical laws doing so), we would see that the quasar has evolved into a “normal” galaxy like those in our neighborhood. And looking back to the Milky Way, we would see a galaxy in its quasar stage of evolution.

The SDSS quasars appear to have no obvious signs of large-scale structure. There is a pattern that depends on distance, which we might expect to see since this is an observed catalog and the brightness of objects falls off with distance. Around 16 billion light-years, the data begin to “fade out,” or become sparse. You’ll notice too that the 2dF quasars cut off at this same distance, around 20 billion light-years. However, the lack of structure within the data results from the fact that quasars are relatively rare and represent only a sparse sampling of the large-scale structure that exists.

Quasars are among the farthest objects we see, but they do not take us all the way back to the beginning of the Universe. To peer into the earlier Universe, we look to the cosmic microwave background light seen in the WMAP all-sky survey (wmap).
In 1948, the astronomers Ralph Alpher (1921–2007), Hans Bethe (1906–2005), and George Gamow (1904–1968) published their assertion that the gas in the early Universe must have been very hot and dense and that this gas should be present throughout today’s Universe, albeit much cooler and far less dense.

Alpher searched for this cool gas, but it would be another 16 years before it was discovered, not by astronomers but by two physicists working at Bell Telephone Laboratories in New Jersey. In 1964, Arno Penzias (b. 1933) and Robert Wilson (b. 1936) were trying to communicate with a recently launched communications satellite and could not remove “noise” from their transmissions. This weak hiss was a constant nuisance that was present during the day, the night, and throughout the year. This fact ruled out possibilities such as equipment interference, atmospheric effects, or even bird droppings on the radio telescope built to communicate with their satellite.

Penzias and Wilson tried their best to remove this noise but were unsuccessful. In the end, they acknowledged that the faint microwave signal must be real and is not from some defect or artificial interference (see “Electromagnetic Spectrum” for information on microwave light).

In the meantime, researchers down the road at Princeton University were on Alpher’s trail, investigating this gas from the early Universe. They maintained that the hot radiation would have been redshifted from gamma rays into X-rays, ultraviolet, visible light, and into the radio range of the EM spectrum. Furthermore, astronomers expected this radiation to be thermal, or what astronomers call blackbody radiation. An object is said to be a blackbody when it emits all the radiation it absorbs. In the early Universe, with only free electrons and nuclei (protons and neutrons), light scattered off electrons just as light travels through a dense fog and would have produced a blackbody spectrum.

If the signal detected at Bell Labs corresponded to a blackbody, it would have a temperature of about 3 Kelvin, which is equivalent to -270°C or -454°F. (In practical terms, most astronomical objects can
be approximated by a blackbody spectrum, which has an inverse relation between the object's peak intensity and its temperature called Wien's Law. Given the wavelength or frequency of the object's peak intensity, Wein's Law tells us the object's temperature.) But the Bell Labs observations could not confirm that the radiation was in fact from a blackbody, and they therefore could not conclude with certainty that this was the radiation left from the Big Bang.

In 1989, the Cosmic Background Explorer (COBE) was launched into orbit to see, once and for all, whether the cosmic microwave background radiation (CMBR) was a blackbody (thermal radiation). COBE observed light in the range from a few microns to about 1 cm, covering a broad swath in the radio spectrum. The results were indisputable. COBE had confirmed decades of theories with observational proof that the CMBR was indeed the light left over from the Big Bang.

COBE also confirmed that the light was remarkably uniform. No matter where the telescope looked, it observed radiation equivalent to a 2.73-Kelvin blackbody with deviations on the order of one part in a hundred thousand. While COBE's angular resolution on the sky was about 7°, it was able to see small differences in temperature.

In 1995, a new mission to explore the CMBR to greater resolution was proposed to NASA. Called MAP (Microwave Anisotropy Probe), it was approved by NASA and launched on June 30, 2001, aboard a Delta II rocket. With the death of David Wilkinson, one of the founding members of MAP and COBE, the mission was named in his honor in 2002.

The WMAP observations have a much higher temperature resolution than COBE, allowing astronomers to see these temperature fluctuations in more detail. At present, WMAP provides the best image of the CMBR, and the results from the mission have narrowed down many of the open questions in cosmology, including the age of the Universe and its ultimate fate.

Origin of the CMBR In the beginning, the Universe was very hot and free electrons (those not attached to any atom) prohibited radiation from traveling freely. As the Universe began to expand, the temperature dropped several thousand Kelvin, allowing protons and electrons to combine to form hydrogen atoms. This occurred about 379,000 years after the Big Bang. Once most of the free electrons were bound to hydrogen atoms, the Universe became transparent to light, allowing the cooled radiation left over from the Big Bang to travel freely throughout the Universe.

When this [recombination](#) event took place, the light from the Big Bang peaked at about 1 micrometer in the infrared. At that time the gas would have been about 3,000 Kelvin and would have glowed
orange-red in the visible spectrum. However, the Universe has expanded 1,000 times since, and the light within space has been redshifted to longer and longer wavelengths. Today, the peak wavelength is close to 1 mm (1 micrometer × 1,000 = 1 mm) and corresponds to a gas temperature around 3 Kelvin (3,000 K ÷ 1,000 = 3 K).

The WMAP Image The WMAP results show the CMBR to be 2.725 Kelvin and resolve temperature fluctuations that vary by millionths of a degree. In the image, red patches are warmer by the slightest deviations from the 2.725 K average, while blue patches are cooler by the same slight difference. Remember, though, that the overall temperature would appear uniform to our eyes. If we could see in microwave wavelengths, the sky would be a uniform brightness everywhere, for our eyes cannot see such small fluctuations.

The red regions are the seeds of the large-scale structure we see in today’s Universe. The WMAP data give astronomers another piece in the puzzle of the evolution of the Universe. Astronomers continue to ponder how these small temperature fluctuations from 379,000 years after the Big Bang ultimately became the galaxy clusters and filaments we see in the present Universe.

Currently, we miss much of the universe’s childhood. The WMAP is the baby picture taken when the Universe was 379,000 years old. Our next picture is not until the Universe is about 900 million years old, when quasars and galaxies appear. What occurred between those times is under the microscope—or telescope, in this case—of astronomers the world over.

Placement of the WMAP The WMAP all-sky image is a two-dimensional image taken from a space telescope in orbit around Earth. We place the image on a sphere whose radius represents the furthest extent of light from the recombination era. This is a bit deceiving, since the CMBR is everywhere in the Universe; however, the sphere marks the farthest reaches of the Universe as seen from Earth, where hydrogen formed 379,000 years after the Big Bang. Currently, this places our horizon at about 42 billion light-years in all directions. Beyond this distance, the Universe will forever be opaque to us.
3.3. **EXTRAGALACTIC DATA GROUPS**

3.3.17 Extragalactic Coordinate Grids

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Reference</th>
<th>Prepared by</th>
<th>Labels</th>
<th>Files</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>100kly, 1Mly, 10Mly, 100Mly, 1Gly, 20Gly</td>
<td>—</td>
<td>Brian Abbott (AMNH/Hayden)</td>
<td>Yes</td>
<td>100kly.speck, 1Mly.speck, 10Mly.speck, 100Mly.speck, 1Gly.speck, 20Gly.speck</td>
<td>none</td>
</tr>
</tbody>
</table>

As was the case in the Milky Way Atlas, we use grids in the Extragalactic Atlas to provide scale as well as a visual beacon for home. The nested grids in the Extragalactic Atlas are centered on the Sun (or the Milky Way Galaxy) and extend to the farthest reaches of the observable Universe.

The grids are formed with Partiview's `mesh` command and can be brightened or dimmed with the Alpha Slider. The grids cover these size scales:

- **100kly** This is our final scale covering the Milky Way. Reaching out to 100,000 light-years, the grid is coplanar with the disk of our Galaxy and centered on the Sun. (All grids after this are in the plane of the celestial equator, since much of the galaxy survey data are in this plane.) This grid highlights the scale of the disk, the Sun's distance from the center of the Galaxy, and reaches out to the vicinity of our nearest neighboring galaxies.

- **1Mly** The 1 million-light-year grid is tipped with respect to the 100kly. This grid covers many of the Milky Way's satellite galaxies but not the entire Local Group.

- **10Mly** The next order of magnitude out is the 10 million-light-year grid. It spans most of the nearby galaxies in the data group.

- **100Mly** The 100 million-light-year grid begins to cover the close galaxies in the 2dF and Sloan galaxy surveys.

- **1Gly** The 1 billion-light-year grid is an intermediate step to our largest grid.

- **20Gly** The largest grid extends to 20 billion light-years from the Sun and spans the majority of the quasars.
Appendix A

Light-Travel Time and Distance

The Digital Universe measures distance in light-travel time rather than in kilometers or miles. Light-travel time refers to the distance light travels over a given time. We know light travels at 299,792 km/sec (186,322 miles/sec). At that speed, the light-year becomes a convenient unit of distance in the Milky Way. In this appendix, we list common conversions between light-travel times and distances that we’re familiar with.

Table A.1 – Conversion between light-travel time distances and astronomical units (AU), kilometers, and miles. (1 AU = Earth-Sun distance)

<table>
<thead>
<tr>
<th>Light-travel Time</th>
<th>Distance (AU)</th>
<th>Distance (kilometers)</th>
<th>Distance (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 light-second</td>
<td>0.0020</td>
<td>299,792.458</td>
<td>186,322.224</td>
</tr>
<tr>
<td>1 light-minute</td>
<td>0.1202</td>
<td>17.98 million</td>
<td>11.18 million</td>
</tr>
<tr>
<td>8.3 light-minutes</td>
<td>1.0</td>
<td>149.6 million</td>
<td>93 million</td>
</tr>
<tr>
<td>1 light-hour</td>
<td>7.2143</td>
<td>1.08 billion</td>
<td>670.76 million</td>
</tr>
<tr>
<td>1 light-day</td>
<td>173.14</td>
<td>25.9 billion</td>
<td>16.098 billion</td>
</tr>
<tr>
<td>1 light-week</td>
<td>1212.0</td>
<td>181.3 billion</td>
<td>112.69 billion</td>
</tr>
<tr>
<td>1 light-month (30 days)</td>
<td>5194.3</td>
<td>777.06 billion</td>
<td>482.95 billion</td>
</tr>
<tr>
<td>1 light-year</td>
<td>63240.2</td>
<td>9.46 trillion</td>
<td>5.89 trillion</td>
</tr>
</tbody>
</table>
Table A.2 – Light-travel distances to some familiar objects in the Universe, as measured from the Sun.

<table>
<thead>
<tr>
<th>Object</th>
<th>Light-travel distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>3.22 light-minutes</td>
</tr>
<tr>
<td>Venus</td>
<td>6.01 light-minutes</td>
</tr>
<tr>
<td>Earth</td>
<td>8.32 light-minutes</td>
</tr>
<tr>
<td>Mars</td>
<td>12.7 light-minutes</td>
</tr>
<tr>
<td>Jupiter</td>
<td>43.3 light-minutes</td>
</tr>
<tr>
<td>Saturn</td>
<td>1.32 light-hours</td>
</tr>
<tr>
<td>Uranus</td>
<td>2.66 light-hours</td>
</tr>
<tr>
<td>Neptune</td>
<td>4.16 light-hours</td>
</tr>
<tr>
<td>Farthest comets</td>
<td>1.58 light-years</td>
</tr>
<tr>
<td>Proxima Centauri (nearest star)</td>
<td>4.3 light-years</td>
</tr>
<tr>
<td>Orion Nebula</td>
<td>1,500 light-years</td>
</tr>
<tr>
<td>Center of the Milky Way</td>
<td>26,000 light-years</td>
</tr>
<tr>
<td>Andromeda Galaxy (farthest naked-eye object)</td>
<td>2.36 million light-years</td>
</tr>
</tbody>
</table>

The table above lists some light-travel-time distances to a few well-known places. These are measured from the Sun. Included are the major Solar System objects, including Earth, which is about 8 light-minutes from the Sun. Think about this for a minute. If the Sun’s light takes 8 light-minutes to reach Earth, then something catastrophic could happen on the Sun and we would not know for 8 minutes. The nearest star to the Sun is more than 4 light-years away. Look to that star in the sky tonight and you’re seeing it as it was 4 years ago. The center of our Galaxy is 26,000 light-years away. The light we see from there left when our ancestors were painting primitive scenes in caves. The farthest object we can see with our eyes, in a dark sky without the aid of a telescope, is the Andromeda Galaxy, more than 2 million light-years away. What was happening on Earth 2 million years ago?
Appendix B

Parallax and Distance

One of the most important breakthroughs in astronomy was the development of accurate distance determination methods for the nearby stars. Distances in astronomy are elusive, and astronomers use many methods to determine them. Our knowledge of the size and scale of the Universe is based upon some fundamental distances, and the distances to the nearby stars are one pillar upon which many theories rest. How certain are we about the distance to a nearby star?

To find the distance to a nearby star, astronomers measure something called the parallax angle of a star. Generally, parallax is the apparent shift in an object’s position resulting from the observer’s changing perspective. We experience this effect just by closing one eye, then viewing the same scene with only the other eye open. Of course, the scene must be nearby, as our eyes can perceive depth only when objects are relatively close to us.

We know that stars are very far away, so we cannot use our eyes to see the parallax of stars. We need a larger baseline than the separation between our eyes. The longer baseline that allows us to see parallax in stars is the motion of the Earth around the Sun. Six months from now, Earth will have moved through half its orbit and will be located opposite the Sun from where it is today. The baseline between these two points is 2 times the Earth-Sun distance, or 2 astronomical units.

This baseline, which is almost 300 million kilometers (186 million miles), still does not reveal the apparent motion of the stars to our eyes. However, using a telescope, astronomers can measure these tiny apparent motions throughout the course of the year. But what do we observe?
Let's think about the situation. We have the Sun, Earth in orbit around it, and a distant star. The Sun-Earth distance, \(R \), is known to be 1 AU, and the angle between the line connecting the Sun and star and the line connecting Earth and the star, \(p \), is the parallax angle that is measured. Given these two quantities, we can solve the triangle for the distance, \(d \), between the Sun and the star.

If you recall your trigonometric equations, you can express the solution to the triangle in this equation:

\[
\tan(p) = \frac{R}{d}
\]

When the angle \(p \) is very small, as it is here (the parallax angle to the nearest star, Proxima Centauri, is only 0.75 arcseconds = 0.00021), \(\tan(p) \) is nearly zero, which means that \(d \) must be much, much greater than \(R \). And indeed it is! When the parallax angle is one arcsecond, the distance to the star is defined to be one parallax-second, or parsec, a fundamental unit of distance in astronomy. A star that is 1 parsec from the Sun appears to subtend 1 second of arc in the sky as Earth orbits the Sun. A star of 10 parsecs, like the star Pollux in Gemini, has a parallax angle of about \(1/10 \) arcseconds (in fact, it is 0.0967 arcseconds, close to 0.1).

This very simple relation yields insight toward the scale of the nearby stars. This understanding came in 1838 thanks to the observations of Friedrich Bessel at the Prussian Observatory in Berlin, Germany. He measured the parallax angle of the star 61 Cygni to be about a third of an arcsecond, yielding the first reliable distance to a nearby star (which turns out to be 3.2 parsecs, or about 10 light-years).

You might think that this solves all of our problems in understanding the distance to objects, but it does not. Just as the baseline for the human eye is too small to see the effects of parallax, or depth, the baseline of Earth’s orbit is also minute compared with the scales of the Milky Way, let alone the Universe.

Photometric Parallax For stars that are too far away to measure their parallax angle, astronomers derive a photometric parallax for use in determining their distance. The photometric parallax is not an angle and is not even based in geometry. Rather, it is based on an analysis of the light of the star.

For stars with a trigonometric parallax that can be measured with little uncertainty, astronomers look at the light from the stars and classify them by spectral types according to the absorption and emission lines that appear in their spectra. If the star has a measured apparent brightness, \(m \), as seen from Earth, and its distance \(d \) is known from its trigonometric parallax, then its intrinsic brightness, or
absolute magnitude M, can be calculated with this equation:

$$m - M = -5 + 5 \log(d)$$

From these classifications, astronomers can determine whether it is a hot, intrinsically bright star or a cool, dimmer star. Then the star’s intrinsic brightness and its spectral type can be calibrated for stars with known distances.

Astronomers use this calibration to determine the distance to stars that are too far away to measure trigonometric parallax angles. By observing the star’s spectrum, they infer intrinsic brightness. This, along with the apparent magnitude of the star, is used in the previous equation, which, rearranged to solve for the distance, is given by

$$d = 10 \frac{m - M + 5}{5}$$

The notion of photometric parallax, assuming the intrinsic brightness of an object, is common in astronomy for determining distances to stars, molecular clouds, and supernovae. It is plagued by large uncertainties, but in some cases, it is the best clue we have to determine an object’s distance.

AMNH Star Distances In the AMNH star catalog, a star’s distance is derived from a weighted mean value of the trigonometric and photometric parallax. The uncertainties of each are factored in, and then a final distance is computed. If the trigonometric parallax measurement is of high quality, then it will be the primary measurement used in determining the distance. If the measurement has a high uncertainty, then the photometric parallax will be brought in for comparison. For about 45% of the stars, the final distance is a combination of the trigonometric and the photometric parallax.
Appendix C

Redshift and Distance

For objects on extragalactic scales, we use something called the redshift to determine the object’s distance. Redshift refers to the Doppler shift in the light of an object as it moves away from us.

Consider an approaching train. If the train is blowing its whistle as it approaches you, passes you, and speeds away from you, the pitch of the whistle will change. This is the Doppler shift of the sound waves as the train travels toward you and then away from you. Another way to describe this change in pitch is to indicate the alteration in wavelength, or frequency.

Similar shifts happen to light as an object travels toward or away from you. The wavelength or frequency of the light changes. The electromagnetic (EM) spectrum spans all light and runs from short wavelengths, where energetic gamma rays exist, to long wavelengths in the radio part of the spectrum (see “Electromagnetic Spectrum” for more information). In general, the gamma rays are said to be on the blue end of the spectrum and the radio waves are toward the red end. These red and blue labels come from the visible spectrum, where red light within the visible spectrum is on the radio side of the EM spectrum and blue and violet are on the gamma-ray side of the spectrum.

If an object is moving away from us, we observe the wavelength of the light to increase and the light appears to decrease in energy. This is called redshifted light. Conversely, if an object is approaching us, its light is shifted to shorter wavelengths and appears more energetic. This is called blueshifted light.

From the section “Extragalactic Atlas Overview,” we know the Universe is expanding. In 1912, Vesto Slipher discovered that all the spiral galaxies he observed had a redshifted spectrum. In the 1920s, Edwin Hubble began plotting the redshift, or recessional velocity, of galaxies versus their distance and
discovered that there was a linear correlation. We now know this relationship as Hubble's Law. It is simply stated

\[v_{\text{recessional}} = H_0 \times \text{distance} \]

where the redshift yields the \(v_{\text{recessional}} \) and \(H_0 \) is the constant of proportionality called Hubble's constant.

Mathematically, Hubble’s constant is just the slope of the straight line relating the velocity and the distance. Physically, it is the rate of expansion of the Universe and is one of the most important quantities in astrophysics. It dominated astrophysical discussions in the 20th century, but is known with more certainty now. The units of the constant are in speed over distance and are typically in km/sec/Mpc (kilometers per second for each megaparsec).

Using various methods, astronomers narrowed the value of this constant down to the range 45 – 90 km/sec/Mpc. Some believed it to be closer to 50 km/sec/Mpc, while others were in the 90 km/sec/Mpc camp. The latest results from the WMAP mission derives the Hubble constant from the fluctuations in the cosmic microwave background. Their results accurately determine the value to within 5% and place its value at 71 km/sec/Mpc.

Redshift is measured by the literal shift in an object’s light toward the red end of the EM spectrum. Astronomers first observe the spectrum of a far-off galaxy. Then they compare the wavelengths of the spectral features (absorption lines) from where they would be for an object at rest. This shift determines the recessional velocity as a percentage of the speed of light. If the redshift of a galaxy is 0.2, then it is moving away from us at 20% the speed of light.

This presents a problem, since the highest redshifts observed are more than 8.0. Is the object speeding away at 8 times the speed of light? No, nothing can travel faster than the speed of light. Large redshifts are called cosmological redshifts, and they require us to factor in relativity.

The Doppler formula, which assumes the velocity is much less than the speed of light, is not correct for quasars that appear to be moving away from us at close to or more than the speed of light. For these objects, we must take into account the expansion of the Universe itself. This is why astronomers have introduced the look-back time, which is a measure of how long ago the light was emitted from the object. For nearby objects, the look-back time and the distance are equal. For more distant objects, the look-back time and the distance diverge because the Universe is expanding. Light from the edge of the observable Universe has a look-back time of about 13 billion years; however, the distance to the horizon is now 42 billion light-years, due to the expanding Universe. The simple equations for Doppler shift and
Hubble’s Law do not apply at these great redshifts, where astronomers must use relativistic versions of the equations to account for the expanding Universe.
Appendix D

Electromagnetic Spectrum

The entirety of light, or radiation, in the Universe spans more than just the light we see with our eyes. This continuous range of light is called the electromagnetic (EM) spectrum and includes radiation at every frequency or wavelength. The EM spectrum has been broken into regions (see Table D.1) ranging from the highest-energy gamma rays to the lowest-energy radio waves.

Table D.1 – Regions of the electromagnetic spectrum. Ranges are expressed as wavelengths (in meters) and frequencies (in Hertz). The corresponding blackbody temperature is the average over the range (or the upper or lower limit) and is in Kelvin.

<table>
<thead>
<tr>
<th>Region</th>
<th>Wavelengths (m)</th>
<th>Frequencies (Hz)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>$> 1 \times 10^{-1}$</td>
<td>$< 3 \times 10^9$</td>
<td>< 0.029</td>
</tr>
<tr>
<td>Microwave</td>
<td>1×10^{-3} to 1×10^{-1}</td>
<td>3×10^9 to 3×10^{11}</td>
<td>$2.9 – 0.029$</td>
</tr>
<tr>
<td>Infrared</td>
<td>7×10^{-7} to 1×10^{-3}</td>
<td>3×10^{11} to 4×10^{14}</td>
<td>$4,140 – 2.9$</td>
</tr>
<tr>
<td>Visible</td>
<td>4×10^{-7} to 7×10^{-7}</td>
<td>4×10^{14} to 7×10^{14}</td>
<td>$7,245 – 4,140$</td>
</tr>
<tr>
<td>Ultraviolet</td>
<td>1×10^{-8} to 4×10^{-7}</td>
<td>7×10^{14} to 3×10^{16}</td>
<td>$290,000 – 7,245$</td>
</tr>
<tr>
<td>X-ray</td>
<td>1×10^{-11} to 1×10^{-8}</td>
<td>3×10^{16} to 3×10^{19}</td>
<td>$290,000,000 – 290,000$</td>
</tr>
<tr>
<td>Gamma-ray</td>
<td>$< 1 \times 10^{-11}$</td>
<td>$> 3 \times 10^{19}$</td>
<td>$> 290,000,000$</td>
</tr>
</tbody>
</table>

In addition to its usefulness in astronomy, each region of the EM spectrum is important for everyday uses as well. On the high-energy side of the EM spectrum, we use gamma rays to power nuclear reactors and for medical testing involving radioactive isotopes. In space we observe gamma-ray bursts. These result from a collision between a black hole and a neutron star and produce enough energy that
they are easily seen across the Universe.

On Earth, we use X-rays to check for broken bones and decay in our teeth. In astronomy, X-rays are used to study neutron stars and black holes in our Galaxy and to find quasars throughout the Universe. Astronomers also observe X-rays in the winds of hot stars in the Milky Way.

Most of the ultraviolet (UV) radiation is absorbed in the atmosphere before it reaches the ground. The little that does make it through can be harmful to humans, causing skin cells to mutate and become cancerous. In astronomy, UV light is used to study active star formation and for probing the atmospheres of cooler stars.

The visible part of the spectrum is that region of the EM spectrum where the Sun emits its peak intensity. This is the main reason that humans have evolved to see in this region of the spectrum. Our eyes can simply be thought of as filters that see only in the visible part of the EM spectrum. With a prism, this region can be split into its component colors from red to violet. Visible light reveals the main stellar populations in galaxies.

Infrared (IR) light is used to track cloud cover in meteorology and for seeing objects in the dark with night-vision goggles. Humans radiate in the IR (about 9,300 nm) with a body temperature of about 36°C (98°F). In the Galaxy, infrared light is emitted by dust, which can absorb a huge fraction of incoming starlight before re-radiating it. IR telescopes can penetrate this dust to see stars and planets embedded in clouds of star-forming regions, like the Orion Nebula.

Microwave radiation is used to heat food and for cellular communications. Astronomers observe microwave light in galaxies and quasars, but for the most part, the microwave bands are dominated by the cosmic microwave background, the light emitted shortly after the Big Bang.

Finally, the least energetic form of light is radio. On Earth, we receive radio light for AM and FM broadcasts (wavelengths of AM are around 1 kilometer, while FM lies near 10 meters), television (UHF and VHF signals are around 0.1 to 1 meter), and radar. Astronomers use radio telescopes to detect the locations of large hydrogen clouds where stars form, revealing the size and structure of the Galaxy.

Astronomers use the EM spectrum to probe objects at varying depths. Some regions, like the visible and parts of the radio spectrum, are observed on Earth. Most regions are absorbed by our atmosphere, requiring us to build space telescopes to see these wavelengths.
Appendix E

Constants and Units

In addition to the meter (m), kilogram (kg), and second (s), there are several units commonly used in astronomy. We list these and provide some conversions, astronomical constants, and the metric prefix converter.

Table E.1 – Commonly used quantities in astronomy.

<table>
<thead>
<tr>
<th>Name</th>
<th>Astronomical Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>astronomical unit</td>
<td>AU</td>
<td>149.6×10^6 km = 93 million miles</td>
</tr>
<tr>
<td>light-year</td>
<td>ly</td>
<td>9.46×10^{12} km = 5.88 trillion miles</td>
</tr>
<tr>
<td>parsec</td>
<td>pc</td>
<td>3.26 ly = 206,265 AU</td>
</tr>
<tr>
<td>Angstrom</td>
<td>À</td>
<td>10^{-10} meters</td>
</tr>
<tr>
<td>micron</td>
<td>µ</td>
<td>1 micrometer = 10^{-6} meters</td>
</tr>
<tr>
<td>Kelvin</td>
<td>K</td>
<td>°C + 273</td>
</tr>
</tbody>
</table>
Table E.2 – Some constants in astronomy.

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of light</td>
<td>c</td>
<td>3×10^8 meters/sec</td>
</tr>
<tr>
<td>Mass of the Sun</td>
<td>M_\odot</td>
<td>1.989×10^{30} kilograms</td>
</tr>
<tr>
<td>Radius of the Sun</td>
<td>R_\odot</td>
<td>6.96×10^8 m = 432,494 miles</td>
</tr>
<tr>
<td>Luminosity of the Sun</td>
<td>L_\odot</td>
<td>3.83×10^{26} J/sec</td>
</tr>
<tr>
<td>Mass of Earth</td>
<td>M_\oplus</td>
<td>5.98×10^{24} kg</td>
</tr>
<tr>
<td>Mass of Jupiter</td>
<td>M_J</td>
<td>$317.03 , M_\oplus$</td>
</tr>
<tr>
<td>Radius of Earth (equatorial)</td>
<td>R_\oplus</td>
<td>$6,378.2$ km = $3,963.4$ miles</td>
</tr>
</tbody>
</table>
Metric Prefixes These prefixes are used before fundamental units like meter, Hertz, or second. Factors with positive exponents increase the number of zeros after the number. For example, a kilometer, km, is 1,000 meters; a gigaHertz, GHz, is 1 billion Hertz or 1,000,000,000 Hertz. Prefixes with negative factors are less than unity. A nanometer (nm) is a billionth of a meter or 0.000 000 001 meter; a millisecond (ms) is a thousandth of a second or 0.001 second.

Table E.3 – Prefixes for metric units including the prefix name, its symbol, and the multiplying factor. **Bold** prefixes are used commonly in astronomy.

<table>
<thead>
<tr>
<th>Metric System Prefixes</th>
<th>Name</th>
<th>Symbol</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>yotta</td>
<td>Y</td>
<td>10^{24}</td>
<td></td>
</tr>
<tr>
<td>zetta</td>
<td>Z</td>
<td>10^{21}</td>
<td></td>
</tr>
<tr>
<td>exa</td>
<td>E</td>
<td>10^{18}</td>
<td></td>
</tr>
<tr>
<td>peta</td>
<td>P</td>
<td>10^{15}</td>
<td></td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10^{12}</td>
<td></td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^{9}</td>
<td></td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^{6}</td>
<td></td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^{3}</td>
<td></td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>10^{2}</td>
<td></td>
</tr>
<tr>
<td>deka</td>
<td>da</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>deci</td>
<td>d</td>
<td>10^{-1}</td>
<td></td>
</tr>
<tr>
<td>centi</td>
<td>c</td>
<td>10^{-2}</td>
<td></td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>10^{-3}</td>
<td></td>
</tr>
<tr>
<td>micro</td>
<td>μ</td>
<td>10^{-6}</td>
<td></td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10^{-9}</td>
<td></td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>10^{-12}</td>
<td></td>
</tr>
<tr>
<td>femto</td>
<td>f</td>
<td>10^{-15}</td>
<td></td>
</tr>
<tr>
<td>atto</td>
<td>a</td>
<td>10^{-18}</td>
<td></td>
</tr>
<tr>
<td>zepto</td>
<td>z</td>
<td>10^{-21}</td>
<td></td>
</tr>
<tr>
<td>yocto</td>
<td>y</td>
<td>10^{-24}</td>
<td></td>
</tr>
</tbody>
</table>
Index

1,000-light-year grid, 25, 112
1-light-month grid, 112
1-light-year grid, 23, 112
10,000-light-year grid, 36, 112
10-light-year grid, 23, 112
100-light-year grid, 112

absolute magnitude, 29
all-sky survey
 atomic hydrogen, 89
carbon monoxide, 90
far-infrared, 91
gamma-ray, 101
hydrogen-alpha, 97
IRAS composite, 92
radio, 88
two-micron, 94
ultraviolet, 99
visible, 95
WISE, 93
X-ray, 100

Andromeda Galaxy, 69, 105
apparent magnitude, 28
atomic hydrogen all-sky survey, 89
B–V color, 34
bow shock, 81
brown dwarf, 59
carbon monoxide all-sky survey, 90
censize command, 32
Censize Slider, 32
center command, 33, 43
cment command, 15

command
 alpha, 14, 18
censize, 32
center, 33, 43
cment, 15
datavar, 27
jump, 22
lum const, 29
lum datavar, 30
see, 30
textcment, 15, 25
thresh, 28, 31

Alpha Centauri, 23

alpha command, 14, 18
Alpha Slider, 18
alternate star names, 51
constellations, 14, 54
coordinate system
ecliptic, 17, 86
equatorial, 16, see equatorial, 84
Galactic, 17, 87
data group list
 Milky Way Atlas, 10
data groups
 AltLbl, 51
 arms, 106
 bar, 44, 110
 constel, 14, 54
dso, 102
dwarfs, 59
eclip, 17, 86
er, 31, 52
expl, 24, 60
galac, 17, 87
galaxy, 43, 105
galGrid, 114
go, 19, 41, 68
halo, 45, 111
HIIregions, 38, 73
IRASc, 92
kepler, 62
Milky Way Atlas, 46
 list, 10
mwCO, 90
mwFIR, 91
mwGamma, 101
mwH, 88, 89
mwHa, 97
mwNUV, 99
mwtwoMass, 94
mwVis, 18, 95
mwWISE, 93
mwXray, 100
nearstars, 57
ob, 36, 66
oc, 20, 37, 64
onehundredly, 112
onekly, 25, 112
onelmo, 112
onely, 23, 112
oort, 22, 83
orineb, 79
pn, 75
pul, 40, 71
radec, 16, 25, 84
snr, 40, 77
starorbits, 107
Stars, 46
tenkly, 36, 112
tenly, 23, 112
data variables, 27
datavar command, 27
decimation, 16
deep-sky images, 102
Digital Universe
discussion group, 6
help, 6
license, 6
listserv, 6
distance uncertainty, 31

dwarf objects, 59

Earth’s radio signals, 25

ecliptic, 17
ecliptic coordinates, 17, 86
equatorial coordinates, 16, 84
extrasolar planets, 24, 60

far-infrared all-sky survey, 91

finger of god effect, 33

flight mode
 active, 13
 changing, 13
 Fly, 13
 Orbit, 13
 Rotate, 13
 Translate, 14

Fly Flight Mode, 13
FOV Slider, 21

Galactic coordinates, 17, 87
galactic star clusters, see open star clusters

Galaxy grid, 114
gamma-ray all-sky survey, 101
globular star cluster
 age, 20
globular star clusters, 19, 41, 68

grids
 Galaxy, 114
 Sun-centered
 1,000-light-year, 112
 1-light-month, 112
 1-light-year, 112
 10-light-year, 112
 10,000-light-year, 112
 100-light-year, 112

help, 6

HII regions, 38, 73, 80

Hipparchus, 28

Hubble, Edwin, 69, 105

Hyades star cluster, 32

hydrogen-alpha all-sky survey, 97

IRAS composite all-sky survey, 92

jump command, 22

Kepler Planetary Candidates, 62

L dwarf, 59

lum const command, 29

lum datavar command, 30

Messier, Charles, 102

Milky Way, 9
 bar, 44, 110
 disk component, 43
 halo, 45, 111
 image, 43, 105
 nucleus, 44
 spherical component, 45
 spiral arms, 39, 106

Milky Way Atlas
 1,000-light-year grid, 25, 112
 1-light-month grid, 112
 1-light-year grid, 23, 112
10,000-light-year grid, 36, 112
10-light-year grid, 23, 112
100-light-year grid, 112
alternate star names, 51
atomic hydrogen all-sky survey, 89
carbon monoxide all-sky survey, 90
constellations, 14, 54
data group list, 10
deep-sky images, 102
dwarf objects, 59
ecliptic coordinates, 17, 86
equatorial coordinates, 16, 84
extrasolar planets, 24, 60
far-infrared all-sky survey, 91
Galactic coordinates, 17, 87
Galaxy grid, 114
gamma-ray all-sky survey, 101
globular star clusters, 19, 41, 68
HII regions, 38, 73
hydrogen-alpha all-sky survey, 97
IRAS composite all-sky survey, 92
Kepler Planetary Candidates, 62
Milky Way
 bar, 44, 110
 halo, 45, 111
 image, 43, 105
 spiral arms, 106
near ultraviolet survey, 99
Nearby Stars, 57
OB associations, 36, 66
Oort cloud, 22, 83
open star clusters, 20, 37, 64
Orion Nebula, 79
overview, 10
planetary nebulae, 75
pulsars, 40, 71
Radio continuum all-sky survey, 88
radio sphere, 25
stars data group, 46
stellar distance uncertainty, 31, 52
stellar orbits, 107
supernova remnants, 40, 77
two-micron all-sky survey, 94
visible all-sky survey, 18, 95
WISE all-sky survey, 93
X-ray all-sky survey, 100
near ultraviolet survey, 99
Nearby Stars, 57
OB associations, 36, 66
Oort cloud, 22, 83
open star clusters
 age, 20
open star clusters, 20, 37, 64
Orion Nebula, 79
Partiview
command
 alpha, 14, 18
censize, 32
center, 33, 43
cment, 15
datavar, 27
jump, 22
lum const, 29
lum datavar, 30
see, 30
textcment, 15, 25
thresh, 28, 31
position reset, 23
slider
Alpha, 18
Censize, 32
FOV, 21
Slum, 25
planetary nebulae, 75
Pleiades star cluster, 33
Point of Interest, 13
changing, 32
proplyd, 81
pulsars, 40, 71
Radio continuum all-sky survey, 88
radio sphere, 25, 85
right ascension, 16
Rotate Flight Mode, 13
see command, 30
selecting data points, 23
Shapley, Harlow, 19, 68, 105
slider
Alpha, 18
Censize, 32
FOV, 21
Slum, 25
Slum Slider, 25
star
brightness, 28
color, 34
distance uncertainty, 31
luminosity, 29
orbit, 107
stars data group, 46
stellar distance uncertainty, 31, 52
stellar orbits, 107
supernova remnants, 40, 77
T dwarf, 59
textcment command, 15, 25
thresh command, 28, 31
Translate Flight Mode, 14
two-micron all-sky survey, 94
visible all-sky survey, 18, 95
WISE all-sky survey, 93
X-ray all-sky survey, 100